Photodetector without Electron Transport Layer Based on Hexane-1,6-Diammonium Pentaiodobismuth (HDA-BiI5) Molecular Semiconductor
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Device Fabrication
- (1)
- Preparation of hole transport layer
- (2)
- Preparation of light-absorbing layer
- (3)
- Preparation of electrodes
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baeg, K.J.; Binda, M.; Natali, D.; Caironi, M.; Noh, Y.Y. Organic light detectors: Photodiodes and phototransistors. Adv. Mater. 2013, 25, 4267–4295. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Gang, W.; Shi, M.; Yang, G.; Chen, Z.; Wang, M. ZnO/poly(9,9-dihexylfluorene) based inorganic/organic hybrid ultraviolet photodetector. Appl. Phys. Lett. 2008, 93, 383. [Google Scholar] [CrossRef]
- Mazzillo, M.; Condorelli, G.; Castagna, M.E.; Catania, G.; Sciuto, A.; Roccaforte, F.; Raineri, V. Highly efficient low reverse biased 4H-SiC schottky photodiodes for UV-light detection. IEEE Photon. Technol. Lett. 2009, 21, 1782–1784. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, D.; Su, Z.; Fang, F.; Li, B.; Zhang, Z.; Shen, D.; Wang, X. High spectrum selectivity organic/inorganic hybrid visible-blind ultraviolet photodetector based on ZnO nanorods. Organic Electron. Phys. Mater. Appl. 2010, 11, 1318–1322. [Google Scholar] [CrossRef]
- Gong, X.; Tong, M.; Xia, Y.; Cai, W.; Moon, J.S.; Cao, Y.; Yu, G.; Shieh, C.-L.; Nilsson, B.; Heeger, A.J. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 2009, 325, 1665–1667. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Dai, Q.; Hu, Z.-F.; Zhang, X.-Q.; Wang, Y.-S. Organic deep ultraviolet photodetector with response peak focusing on 270 nm using the acceptor BAlq. IEEE Photon.-Technol. Lett. 2011, 23, 1835–1837. [Google Scholar] [CrossRef]
- Tanzid, M.; Ahmadivand, A.; Zhang, R.M.; Cerjan, B.; Sobhani, A.; Yazdi, S.; Nordlander, P.; Halas, N.J. Combining plasmonic hot carrier generation with free carrier absorption for high-performance near-infrared silicon-based photodetection. ACS Photon. 2018, 5, 3472–3477. [Google Scholar] [CrossRef]
- Ka, I.; Le Borgne, V.; Fujisawa, K.; Hayashi, T.; Kim, Y.A.; Endo, M.; Ma, D.L.; El Khakani, M.A. PbS-quantum-dots/double-wall-carbon-nanotubes nanohybrid based photodetectors with extremely fast response and high responsivity. Mater. Today Energy 2020, 16, 9. [Google Scholar] [CrossRef]
- Arredondo, B.; de Dios, C.; Vergaz, R.; Criado, A.; Romero, B.; Zimmermann, B.; Würfel, U. Performance of ITO-free inverted organic bulk heterojunction photodetectors: Comparison with standard device architecture. Org. Electron. 2013, 14, 2484–2490. [Google Scholar] [CrossRef]
- Chang, Y.-M.; Leu, C.-Y. Conjugated polyelectrolyte and zinc oxide stacked structure as an interlayer in highly efficient and stable organic photovoltaic cells. J. Mater. Chem. A 2013, 1, 6446–6451. [Google Scholar] [CrossRef]
- Hau, S.K.; Yip, H.L.; Hong, M.; Jen, K.Y. High performance ambient processed inverted polymer solar cells through interfacial modification with a fullerene self-assembled monolayer. Appl. Phys. Lett. 2008, 93, 441. [Google Scholar] [CrossRef]
- Sun, Y.; Seo, J.H.; Takacs, C.J.; Seifter, J.; Heeger, A.J. Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO film as an electron transport layer. Adv. Mater. 2011, 23, 1679–1683. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Cai, W.; Qin, D.; Wang, E.; Lan, L.; Gong, X.; Peng, J.; Cao, Y. Solution-processed zinc oxide thin film as a buffer layer for polymer solar cells with an inverted device structure. J. Phys. Chem. C 2010, 114, 6849–6853. [Google Scholar] [CrossRef]
- Upadhyay, D.C.; Upadhyay, R.K.; Singh, A.P.; Jit, S. High-performance inverted structure broadband photodetector based on ZnO nanorods/PCDTBT:PCBM:PbS QDs. IEEE Trans. Electron Dev. 2020, 67, 4970–4976. [Google Scholar] [CrossRef]
- Wu, S.; Xiao, B.; Zhao, B.; He, Z.; Wu, H.; Cao, Y. High sensitivity polymer visible-near infrared photo-detectors via an inverted device structure and manipulation of injection barrier height. Small 2016, 12, 3374–3380. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-Y.; Wei, Z.; Li, P.-F.; Tang, Y.-Y.; Liao, W.-Q.; Ye, H.-Y.; Cai, H.; Xiong, R.-G. The narrowest band gap ever observed in molecular ferroelectrics: Hexane-1,6-diammonium pentaiodobismuth(III). Angew. Chem. Int. Ed. 2017, 57, 526–530. [Google Scholar] [CrossRef]
- Guo, D.; Su, Y.; Shi, H.; Li, P.; Zhao, N.; Ye, J.; Wang, S.; Liu, A.; Chen, Z.; Li, C. Self-powered ultraviolet photodetector with super high photoresponsivity (3.05 a/w) based on the GaN/Sn:Ga2O3 pn junction. ACS Nano 2018, 12, 12827–12835. [Google Scholar] [CrossRef]
- Ouyang, B.; Chang, C.; Zhao, L.D.; Wang, Z.L.; Yang, Y. Thermo-photoelectric coupled effect induced electricity in N-type SnSe:Br single crystals for enhanced self-powered photodetectors. Nano Energy 2019, 66, 104111. [Google Scholar] [CrossRef]
- Zhao, K.; Wang, Y.; Han, L.; Wang, Y.; Luo, X.; Zhang, Z.; Yang, Y. Nanogenerator-based self-charging energy storage devices. Nano-Micro Lett. 2019, 11, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabian, D.M.; Ardo, S. Hybrid organic–inorganic solar cells based on bismuth iodide and 1,6-hexanediammonium dication. J. Mater. Chem. A 2016, 4, 6837–6841. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, G.; Zhu, M.; Chen, W.; Zou, Q.; Zeng, T. Polarization-enhanced photoelectric performance in a molecular ferroelectric hexane-1,6-diammonium pentaiodobismuth (HDA-BiI5)-based solar device. RSC Adv. 2020, 10, 1198–1203. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Zhang, Q.; Hu, Q.; Wang, B.; Yang, W. Giant enhancements in electronic transport and photoelectric properties of bismuth oxysulfide by pressure-driven 2D–3D structural reconstruction. J. Mater. Chem. A 2019, 7, 4019–4025. [Google Scholar] [CrossRef]
- He, Z.; Zhong, C.; Huang, X.; Wong, W.-Y.; Wu, H.; Chen, L.; Su, S.; Cao, Y. Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv. Mater. 2011, 23, 4636–4643. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhang, X.D.; Liang, L.; Bao, J.; Li, S.; Yang, W.L.; Xie, Y. High-performance flexible broadband photodetector based on organolead halide perovskite. Adv. Funct. Mater. 2014, 24, 7373–7380. [Google Scholar] [CrossRef]
- Sukhovatkin, V.; Hinds, S.; Brzozowski, L.; Sargent, E.H. Colloidal quantum-dot photodetectors exploiting multiexciton generation. Science 2009, 324, 1542–1544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, N.; Yang, Y. Enhanced self-powered UV photoresponse of ferroelectric BaTiO3 materials by pyroelectric effect. Nano Energy 2017, 40, 352–359. [Google Scholar] [CrossRef]
- Huangfu, G.; Xiao, H.; Guan, L.; Zhong, H.; Hu, C.; Shi, Z.; Guo, Y. Visible or near-infrared light self-powered photodetectors based on transparent ferroelectric ceramics. ACS Appl. Mater. Interfaces 2020, 12, 33950–33959. [Google Scholar] [CrossRef] [PubMed]
- Ma, N.; Zhang, K.; Yang, Y. Photovoltaic–pyroelectric coupled effect induced electricity for self-powered photodetector system. Adv. Mater. 2017, 29, 10. [Google Scholar] [CrossRef]
- Qi, J.; Ma, N.; Yang, Y. Photovoltaic-pyroelectric coupled effect based nanogenerators for self-powered photo-detector system. Adv. Mater. Interfaces 2018, 5, 8. [Google Scholar] [CrossRef]
- Chen, J.; Priya, A.S.; You, D.; Pei, W.; Zhang, Q.; Lu, Y.; Li, M.; Guo, J.; He, Y. Self-driven ultraviolet photodetectors based on ferroelectric depolarization field and interfacial potential. Sens. Actuators A Phys. 2020, 315, 112267. [Google Scholar] [CrossRef]
- Ma, N.; Yang, Y. Boosted photocurrent in ferroelectric BaTiO3 materials via two dimensional planar-structured contact configurations. Nano Energy 2018, 50, 417–424. [Google Scholar] [CrossRef]
- Song, K.; Ma, N.; Mishra, Y.; Adelung, R.; Yang, Y. Achieving light-induced ultrahigh pyroelectric charge density toward self-powered UV light detection. Adv. Electron. Mater. 2019, 5, 8. [Google Scholar] [CrossRef] [Green Version]
- Shen, T.; Chu, Y.; Liao, Y.; Lee, W.; Kuo, H.; Lin, T.; Chen, Y. Ultrahigh-performance self-powered flexible photodetector driven from photogating, piezo-phototronic, and ferroelectric effects. Adv. Opt. Mater. 2020, 8, 8. [Google Scholar] [CrossRef]
- Ghatak, S.; Pal, A.N.; Ghosh, A. Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 2011, 5, 7707–7712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501. [Google Scholar] [CrossRef]
- Tamalampudi, S.; Lu, Y.-Y.; U., R.K.; Sankar, R.; Liao, C.-D.; B., K.M.; Cheng, C.-H.; Chou, F.-C.; Chen, Y.-T. High performance and bendable few-layered InSe photodetectors with broad spectral response. Nano Lett. 2014, 14, 2800–2806. [Google Scholar] [CrossRef] [PubMed]
- Ahmadivand, A. Electrically excited plasmonic ultraviolet light sources. Small 2021, 17, 2100819. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, K.; Zhang, Z.; Wang, C.; Li, B.; Zhao, H.; Zhao, D.; Shen, D. Self-powered solar-blind photodetector with fast response based on Au/β-Ga2O3 nanowires array film schottky junction. ACS Appl. Mater. Interfaces 2016, 8, 4185–4191. [Google Scholar] [CrossRef] [PubMed]
Photodetector | ETL (Yes/No) | Polarization (Yes/No) | Light (nm) | Dark Current (pA) | Responsivity (A/W) | Detectivity [Jones] | Rise and Decay Time (s) | Ref. |
---|---|---|---|---|---|---|---|---|
BaTiO3 | No | No | 365 | - | 3.48 × 10−9 | 2.06 × 104 | - | [26] |
PLZT8 | No | No | 405 | >22 | 4.48 × 10−7 | 7.15 × 107 | - | [27] |
BaTiO3 | No | No | 405 | >100 | <3.5 × 10−7 | <3.5 × 105 | 0.4/1.6 | [28] |
BiFeO3 | No | Yes | 450 | >100 | ~10−7 | ~108 | 0.5/0.8 | [29] |
PLZT | No | Yes | 375 | 3 | <5 × 10−5 | <9.52 × 108 | >0.42/0.46 | [30] |
No | Yes | 532 | <2.5 × 10−5 | <9.52 × 108 | >0.42/0.46 | |||
No | Yes | 375 | 2 | <1 × 10−4 | <3.69 × 109 | 0.34/0.36 | ||
No | Yes | 532 | <2.5 × 10−5 | <3.69 × 109 | >0.34/0.36 | |||
BaTiO3 | No | No | 405 | - | ∼10−7 | 105 | 0.6/0.5 | [31] |
BaTiO3 | No | No | 365 | - | ∼10−7 | − | 0.56/13.44 | [32] |
TiO2:P3HT | Yes | No | 375 | >103 | <5 × 10−4 | <10−8 | >0.52/0.87 | [33] |
Yes | No | 532 | <4.5 × 10−4 | <10−8 | >0.52/0.87 | |||
HDA-BiI5 | Yes | Yes | sunlight illumination | - | - | - | - | [21] |
HDA-BiI5 | Yes | No | sunlight illumination | - | - | - | - | [20] |
HDA-BiI5 | No | No | 375 | 16 | 5.37 × 10−4 | 5.9 × 1010 | 0.061/0.062 | This work |
No | No | 532 | 1.28 × 10−4 | 1.4 × 1010 | 0.062/0.063 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zou, X.; Zhu, J.; Zhang, C.; Cheng, J.; Wang, J.; Wang, X.; Li, X.; Song, K.; Ren, B.; et al. Photodetector without Electron Transport Layer Based on Hexane-1,6-Diammonium Pentaiodobismuth (HDA-BiI5) Molecular Semiconductor. Coatings 2021, 11, 1099. https://doi.org/10.3390/coatings11091099
Wang Y, Zou X, Zhu J, Zhang C, Cheng J, Wang J, Wang X, Li X, Song K, Ren B, et al. Photodetector without Electron Transport Layer Based on Hexane-1,6-Diammonium Pentaiodobismuth (HDA-BiI5) Molecular Semiconductor. Coatings. 2021; 11(9):1099. https://doi.org/10.3390/coatings11091099
Chicago/Turabian StyleWang, Yifei, Xiaoping Zou, Jialin Zhu, Chunqian Zhang, Jin Cheng, Junqi Wang, Xiaolan Wang, Xiaotong Li, Keke Song, Baokai Ren, and et al. 2021. "Photodetector without Electron Transport Layer Based on Hexane-1,6-Diammonium Pentaiodobismuth (HDA-BiI5) Molecular Semiconductor" Coatings 11, no. 9: 1099. https://doi.org/10.3390/coatings11091099
APA StyleWang, Y., Zou, X., Zhu, J., Zhang, C., Cheng, J., Wang, J., Wang, X., Li, X., Song, K., Ren, B., & Li, J. (2021). Photodetector without Electron Transport Layer Based on Hexane-1,6-Diammonium Pentaiodobismuth (HDA-BiI5) Molecular Semiconductor. Coatings, 11(9), 1099. https://doi.org/10.3390/coatings11091099