Numerical Simulation of Acid Gas Distribution and Corrosion Characteristics in Connecting Pipe of Lean/Rich Amine Heat Exchanger
Abstract
:1. Introduction
2. Physical Model and Numerical Method
2.1. Physical Model
2.2. Numerical Method
2.3. Grid Independent Test
2.4. Model Validation
3. Results and Discussion
3.1. Flow Pattern
3.2. Effect of Inlet Gas Holdup
3.2.1. Pipeline Pressure Distribution
3.2.2. Velocity Distribution
3.2.3. Bubble Distribution
3.3. Corrosion Characteristics
4. Anti-Corrosion Treatment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Governing Equations
Appendix A.2. Discretization Method
Appendix A.2.1. Time Terms
Appendix A.2.2. Discretization of the Volume Fraction Equation
Appendix A.2.3. Discretization of the Momentum Equation
Appendix A.3. Turbulence Model
Appendix A.4. Diffusion Equation for Calculating Corrosion Rate
References
- Ou, G.; Bie, K.; Zheng, Z.; Shu, G.; Wang, C.; Cheng, B. Numerical simulation on the erosion wear of a multiphase flow pipeline. Int. J. Adv. Manuf. Technol. 2018, 96, 1705–1713. [Google Scholar] [CrossRef]
- De Waard, C.; Lotz, U.; Milliams, D.E. Predictive model for CO2 corrosion engineering in wet natural gas pipelines. Corrosion 1991, 47, 976–985. [Google Scholar] [CrossRef]
- Xiao, R.; Han, S.; Lyu, T. Research on corrosion and protection for gas-liquid two-phase pipeline. Hot Work. Technol. 2015, 44, 64–67. [Google Scholar]
- Qin, M.; Liao, K.; Zhu, W.; Huang, X.; An, C.; Zhou, W. Gas Liquid Interface Corrosion Behavior of X65 Steel in CO2 and H2S Corrosive. Mater. Prot. 2022, 55, 33–40. [Google Scholar]
- Liao, K.; Qin, M.; He, G.; Yang, N.; Zhang, S. Study on corrosion mechanism and the risk of the shale gas gathering pipelines. Eng. Fail. Anal. 2021, 128, 105622. [Google Scholar] [CrossRef]
- Liu, J.; BaKeDaShi, W.; Li, Z.; Xu, Y.; Ji, W.; Zhang, C.; Cui, G.; Zhang, R. Effect of flow velocity on erosion corrosion of 90-degree horizontal elbow. Wear Int. J. Sci. Technol. Frict. Lubr. Wear 2017, 376–377, 516–525. [Google Scholar] [CrossRef]
- Zheng, D.; Che, D.; Liu, Y. Experimental investigation on gas–liquid two-phase slug flow enhanced carbon dioxide corrosion in vertical upward pipeline. Corros. Sci. 2008, 50, 3005–3020. [Google Scholar] [CrossRef]
- Zheng, D.; He, X.; Che, D. CFD simulations of hydrodynamic characteristics in a gas-liquid vertical upward slug flow. Int. J. Heat Mass Transf. 2007, 50, 4151–4165. [Google Scholar] [CrossRef]
- Nešić, S.; Kahyarian, A.; Choi, Y.S. Implementation of a comprehensive mechanistic prediction model of mild steel corrosion in multiphase oil and gas pipelines. Corrosion 2019, 75, 274–291. [Google Scholar] [CrossRef]
- Magnini, M.; Ullmann, A.; Brauner, N.; Thome, J. Numerical study of water displacement from the elbow of an inclined oil pipeline. J. Pet. Sci. Eng. 2018, 166, 1000–1017. [Google Scholar] [CrossRef]
- Haghtalab, A.; Shojaeian, A. Modeling solubility of acid gases in alkanolamines using the nonelectrolyte Wilson-nonrandom factor model. Fluid Phase Equilibria 2010, 289, 6–14. [Google Scholar] [CrossRef]
- Wang, K.; Li, C.; Lu, J.; Nan, C.; Zhang, Q.; Zhang, H. Intelligent Evaluation of Marine Corrosion of Q420 Steel Based on Image Recognition Method. Coatings 2022, 12, 881. [Google Scholar] [CrossRef]
- Hu, J.; Wang, T.; Wang, Z.; Wei, L.; Zhu, J.; Zheng, M.; Chen, Z. Corrosion protection of N80 steel in hydrochloric acid medium using mixed C15H15NO and Na2WO4 inhibitors. Coatings 2018, 8, 315. [Google Scholar] [CrossRef] [Green Version]
- Duan, Y.F.; Miao, P.; Yu, F.C. Corrosion Failure Analysis of Lean / Rich Amine Heat Exchanger in Natural Gas Purification Unit. Corros. Prot. Petrochem. Ind. 2014, 31, 61–64. [Google Scholar]
- Duan, Y.F.; Zhang, J.; Zong, R.L.; Zhao, X.Y. Study on the Cause and Corrosion Behavior of Heat Stable Salt in Natural Gas Purification Process. Corros. Prot. Petrochem. Ind. 2018, 35, 1–7. [Google Scholar]
- Zhao, Y.L. Study on Gas-Liquid Two-Phase Flow Characteristics in the Gas Pipeline. Master’s Thesis, China University of Petroleum (East China), Dongying, China, 2017. [Google Scholar]
- Yang, Y.X. Study on Oil-Water Two-Phase Flow Characteristics in Light Crude Oil Pipeline. Master’s Thesis, Southwest Petroleum University, Chengdu, China, 2018. [Google Scholar]
- Zhang, H.; Lan, H.; Lin, N. A numerical simulation of water distribution associated with internal corrosion induced by water wetting in upward inclined oil pipes. J. Pet. Sci. Eng. 2019, 173, 351–361. [Google Scholar] [CrossRef]
- Banat, F.; Younas, O.; Didarul, I. Energy and exergical dissection of a natural gas sweetening plant using methyldiethanol amine (MDEA) solution. J. Nat. Gas Sci. Eng. 2014, 16, 1–7. [Google Scholar] [CrossRef]
- Faramawy, S.; Zaki, T.; Sakr, A.A.E. Natural gas origin, composition, and processing: A review. J. Nat. Gas Sci. Eng. 2016, 34, 34–54. [Google Scholar] [CrossRef]
- Zheng, Y.; Ning, J.; Brown, B.; Nesic, S. Advancement in predictive modeling of mild steel corrosion in CO2-and H2S-containing environments. Corrosion 2016, 72, 679–691. [Google Scholar] [CrossRef] [Green Version]
- Gourari, S.; Mebarek-Oudina, F.; Makinde, O.D.; Rabhi, M. Numerical investigation of Gas-Liquid Two-Phase flows in a cylindrical channel. Defect Diffus. Forum 2021, 409, 39–48. [Google Scholar] [CrossRef]
- Zhang, Q.; He, W.; Yang, X.; Liu, S. Analysis on Fluid-solid Coupling Characteristics of Gas-liquid Two-phase Flow Corrosion Pipeline. Therm. Process. Technol. 2021, 50, 38–42. [Google Scholar]
- Chunsheng, W.; Zejun, L.; Yan, Z.; Qiji, S. Study on Characteristics of Flow-induced Vibration (FIV) Induced by Gas-liquid Two-phase Flow in the Conveying Pipe. Int. J. Multiphys. 2020, 14, 17–30. [Google Scholar]
- Feng, J.; Wu, C.; Zhang, J.; Qin, C.; Chen, Z. Effect of Iron Ion on the Evaluation of Buried-Steel Pipeline Corrosion. J. Mater. Civ. Eng. 2022, 34, 04022019. [Google Scholar] [CrossRef]
- Iftikhar, A.; Rahuma, N.M. Corrosion mitigation and inspection strategy for pipeline integrity management: An experience of Sarir Oilfield. Corrosion 2013, 2013, 2249. [Google Scholar]
- Thakur, A.K.; Arya, A.K.; Sharma, P. Analysis of cathodically protected steel pipeline corrosion under the influence of alternating current. Mater. Today Proc. 2022, 50, 789–796. [Google Scholar] [CrossRef]
- Paolinelli, L.D.; Nesic, S. Calculation of mass transfer coefficients for corrosion prediction in two-phase gas-liquid pipe flow. Int. J. Heat Mass Transf. 2021, 165, 120689. [Google Scholar] [CrossRef]
- Yang, G.; Zhu, Z.; Song, W.; Li, Y.; Ma, Y. Corrosion behavior of 20# steel at initial stage under the (CO2/aqueous solution) gas-liquid two-phase plug flow condition. Mater. Res. Express 2019, 6, 066512. [Google Scholar]
- Peng, S.; Zhang, Z.; Liu, E.; Liu, W.; Qiao, W. A new hybrid algorithm model for prediction of internal corrosion rate of multiphase pipeline. J. Nat. Gas Sci. Eng. 2021, 85, 103716. [Google Scholar] [CrossRef]
- Li, P. Study on Gas/Liquid Two Phase Flow of Flow- accelerated Corrosion and Simulation with CFD Method. Chem. Manag. 2014, 163–165. [Google Scholar] [CrossRef]
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Samkhaniani, N.; Ansari, M.R. Numerical simulation of bubble condensation using CF-VOF. Prog. Nucl. Energy 2016, 89, 120–131. [Google Scholar] [CrossRef]
- Lafmejani, S.S.; Olesen, A.C.; Kær, S.K. VOF modelling of gas–liquid flow in PEM water electrolysis cell micro-channels. Int. J. Hydrog. Energy 2017, 42, 16333–16344. [Google Scholar] [CrossRef] [Green Version]
- Yaqub, M.W.; Pendyala, R. CFD simulations of gas-liquid-liquid three-phase co-current flow in horizontal pipe by tracking volume fractions using VOF model. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; Volume 458, p. 012078. [Google Scholar]
- Yang, G.; Song, W.; Wang, F.; Ma, Y.; Hao, Y. Corrosion behavior of 20# steel in aqueous CO2 solution under stratified gas-liquid two-phase flow condition. Anti-Corros. Methods Mater. 2018, 66, 11–18. [Google Scholar]
- Savović, S.; Djordjevich, A.; Ristić, G. Numerical solution of the transport equation describing the radon transport from subsurface soil to buildings. Radiat. Prot. Dosim. 2012, 150, 213–216. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.Y.; Wang, A.M. Research on adaptive methods of non-linear partial micro-division value solution. Comput. Eng. Appl. 2011, 47, 38–40. [Google Scholar]
- Groza, G.; Razzaghi, M. Approximation of solutions of polynomial partial differential equations in two independent variables. J. Comput. Appl. Math. 2019, 346, 205–223. [Google Scholar] [CrossRef]
- Li, C.; Chen, A. Numerical methods for fractional partial differential equations. Int. J. Comput. Math. 2018, 95, 1048–1099. [Google Scholar] [CrossRef]
- Yavneh, I.; Dardyk, G. A multilevel nonlinear method. SIAM J. Sci. Comput. 2006, 28, 24–46. [Google Scholar] [CrossRef] [Green Version]
- Hajipour, M.; Jajarmi, A.; Baleanu, D.; Sun, H. On an accurate discretization of a variable-order fractional reaction-diffusion equation. Commun. Nonlinear Sci. Numer. Simul. 2019, 69, 119–133. [Google Scholar] [CrossRef]
- Barth, T.; Ohlberger, M. Finite Volume Methods: Foundation and Analysis. 2003. Available online: https://ntrs.nasa.gov/api/citations/20030020790/downloads/20030020790.pdf (accessed on 23 September 2022).
- Moukalled, F.; Mangani, L.; Darwish, M. The finite volume method. In The Finite Volume Method in Computational Fluid Dynamics; Springer: Cham, Switzerland, 2016; pp. 103–135. [Google Scholar]
- Eymard, R.; Gallouët, T.; Herbin, R. Finite volume methods. In Handbook of Numerical Analysis; Elsevier: Amsterdam, The Netherlands, 2000; Volume 7, pp. 713–1018. [Google Scholar]
- Mencinger, J.; Žun, I. On the finite volume discretization of discontinuous body force field on collocated grid: Application to VOF method. J. Comput. Phys. 2007, 221, 524–538. [Google Scholar] [CrossRef]
- Garoosi, F.; Hooman, K. Numerical simulation of multiphase flows using an enhanced Volume-of-Fluid (VOF) method. Int. J. Mech. Sci. 2022, 215, 106956. [Google Scholar] [CrossRef]
- Li, D. The Corrosion Mechanism of 20# Steel in CO2/H2O Two Phase Bubble Flow and Its Forecast Model. Master’s Thesis, Lanzhou University of Technology, Lanzhou, China, 2018. [Google Scholar]
- Qiao, S.; Kim, S. Air-water two-phase bubbly flow across 90° vertical elbows. Part I: Experiment. Int. J. Heat Mass Transf. 2018, 123, 1221–1237. [Google Scholar] [CrossRef]
- Liu, W.H.; Li, W.S.; Lyu, N.X.; Fu, A.Q.; Ma, Q.R. Simulation of Gas-Liquid Two-Phase Flow-Induced Corrosion at Premium Connection in High Productivity Gas Wells Containing CO2. Mater. Sci. Forum 2020, 993, 1196–1202. [Google Scholar] [CrossRef]
- Shi, J.; Gourma, M.; Yeung, H. CFD simulation of horizontal oil-water flow with matched density and medium viscosity ratio in different flow regimes. J. Pet. Sci. Eng. 2017, 151, 373–383. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.H. Numerical Simulation and Control Method of Gas-Liquid-Solid Three-Phase Flow Mixture Based on VOF-DEM. Master’s Thesis, Zhejiang University of Technology, Zhejiang, China, 2021. [Google Scholar]
- Brackbill, J.U.; Kothe, D.B.; Zemach, C. A Continuum Method for Modeling Surface Tension. J. Comput. Phys. 1992, 100, 335–354. [Google Scholar] [CrossRef]
- Youngs, D.L. Time-Dependent Multi-Material Flow with Large Fluid Distortion. In Numerical Methods for Fluid Dynamics; Morton, K.W., Baines, M.J., Eds.; Academic Press: Cambridge, MA, USA, 1982. [Google Scholar]
- Wu, D.Z.; Huang, B.; Hu, F.F.; Wu, P.; Wang, L.Q. Numerical simulation on a centrifugal pump under different discrete scheme. J. Eng. Thermophys. 2012, 33, 55–58. [Google Scholar]
- Zhao, H.; Zhang, Y.B.; Chen, J.T.; Deng, Y.Q. The accuracy assessment of gradient computation methods on unstructured grids. J. Acta Aerodyn. Sin. 2019, 37, 844–854. [Google Scholar]
- Tan, Y.F.; Dong, G.Y.; Tan, H.G.; Tan, H.; Wang, X.L. Numerical Simulation of Rotating Self-cleaning Air Pre-Filter Based on Computational Fluid Dynamics. J. Mil. Eng. 2014, 35, 409–414. [Google Scholar]
- Issakhov, A.; Bulgakov, R.; Zhandaulet, Y. Numerical simulation of the dynamics of particle motion with different sizes. Eng. Appl. Comput. Fluid Mech. 2019, 13, 1–25. [Google Scholar] [CrossRef]
- Yang, J.; Teng, P.; Zhang, H. Experiments and CFD modeling of high-velocity two-phase flows in a large chute aerator facility. Eng. Appl. Comput. Fluid Mech. 2019, 13, 48–66. [Google Scholar] [CrossRef] [Green Version]
- Wilke, C.R.; Chang, P. Correlation of diffusion coefficients in dilute solutions. AIChE J. 1955, 1, 264–270. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Z.; Lv, J.; E, Z.; Wei, P.; Gu, Y.; Li, Y.; Song, W.; Yan, Y.; Wei, L.; Hu, J. Numerical Simulation of Acid Gas Distribution and Corrosion Characteristics in Connecting Pipe of Lean/Rich Amine Heat Exchanger. Coatings 2022, 12, 1460. https://doi.org/10.3390/coatings12101460
Shi Z, Lv J, E Z, Wei P, Gu Y, Li Y, Song W, Yan Y, Wei L, Hu J. Numerical Simulation of Acid Gas Distribution and Corrosion Characteristics in Connecting Pipe of Lean/Rich Amine Heat Exchanger. Coatings. 2022; 12(10):1460. https://doi.org/10.3390/coatings12101460
Chicago/Turabian StyleShi, Zeyang, Jianjun Lv, Zhipeng E, Peixu Wei, Yukuan Gu, Yuge Li, Wenming Song, Yuan Yan, Liping Wei, and Jun Hu. 2022. "Numerical Simulation of Acid Gas Distribution and Corrosion Characteristics in Connecting Pipe of Lean/Rich Amine Heat Exchanger" Coatings 12, no. 10: 1460. https://doi.org/10.3390/coatings12101460
APA StyleShi, Z., Lv, J., E, Z., Wei, P., Gu, Y., Li, Y., Song, W., Yan, Y., Wei, L., & Hu, J. (2022). Numerical Simulation of Acid Gas Distribution and Corrosion Characteristics in Connecting Pipe of Lean/Rich Amine Heat Exchanger. Coatings, 12(10), 1460. https://doi.org/10.3390/coatings12101460