Deep Learning-Based Layer Identification of 2D Nanomaterials
Abstract
:1. Introduction
- (1)
- Sixteen different types of semantic segmentation models were used to analyze their specific effects on 2D nanomaterial OM images.
- (2)
- The U2-Net† [27] model based on encoder–decoder architecture was found to have good performance and environmental adaptability without a backbone network and is suitable for various applications for detecting 2D nanomaterials.
- (3)
- We improved the model structure of U2-Net† [27] by means of multiscale connectivity and pyramidal pooling to obtain a 2DU2-Net† model that is more adaptable to two-dimensional nanomaterial layer identification and segmentation.
2. Related Work
3. Materials and Methods
3.1. Network Module Design
3.2. Network Architecture Design
3.3. Loss Functions
3.4. Overall Flow of the Experiment
4. Results and Discussion
4.1. Data Sets
4.2. Evaluation Indicators
4.3. Network Training and Results Analysis
4.3.1. Training Setup
4.3.2. Discussion and Analysis of Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Han, W.P.; Wu, J.; Qiao, X.F.; Zhang, J.; Tan, P. Layer-Number Dependent Optical Properties of 2D Materials and Their Application for Thickness Determination. Adv. Funct. Mater. 2017, 27, 1604468. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, C.; Li, Z.; Xie, Y. Vacancy Engineering for Tuning Electron and Phonon Structures of Two-Dimensional Materials. Adv. Energy Mater. 2016, 6, 1600436. [Google Scholar] [CrossRef]
- Song, H.; Liu, J.; Liu, B.; Wu, J.; Wu, J.; Cheng, H.M.; Cheng, H.M.; Kang, F. Two-Dimensional Materials for Thermal Management Applications. Joule 2018, 2, 442–463. [Google Scholar] [CrossRef] [Green Version]
- Thiel, L.; Wang, Z.; Tschudin, M.A.; Rohner, D.; Gutiérrez-Lezama, I.; Ubrig, N.; Gibertini, M.; Giannini, E.; Morpurgo, A.F.; Maletinsky, P. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science 2019, 364, 973–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, X.; Liu, L.; Zhang, Z.; Wei, Y. Bending Stiffness of Circular Multilayer van der Waals Material Sheets. J. Appl. Mech. 2022, 89, 031011. [Google Scholar] [CrossRef]
- Cai, X.; Luo, Y.; Liu, B.; Cheng, H.M. Preparation of 2D material dispersions and their applications. Chem. Soc. Rev. 2018, 47, 6224–6266. [Google Scholar] [CrossRef] [PubMed]
- Mannix, A.J.; Kiraly, B.; Hersam, M.C.; Guisinger, N.P. Synthesis and chemistry of elemental 2 D materials. Nat. Rev. Chem. 2017, 1, 0014. [Google Scholar] [CrossRef]
- Xie, Z.; Zhang, B.; Ge, Y.; Zhu, Y.; Nie, G.; Song, Y.; Lim, C.K.; Zhang, H.; Prasad, P.N. Chemistry, Functionalization, and Applications of Recent Monoelemental Two-Dimensional Materials and Their Heterostructures. Chem. Rev. 2021, 122, 1127–1207. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.H.; Kalantar-zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef] [PubMed]
- Kooi, B.J.; Noheda, B. Ferroelectric chalcogenides—Materials at the edge. Science 2016, 353, 221–222. [Google Scholar] [CrossRef] [PubMed]
- VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, eabf1581. [Google Scholar] [CrossRef] [PubMed]
- Weng, Q.; Wang, X.; Wang, X.; Bando, Y.; Golberg, D.V. Functionalized hexagonal boron nitride nanomaterials: Emerging properties and applications. Chem. Soc. Rev. 2016, 45, 3989–4012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Yuan, H.; Meng, M.; Chen, C.; Sun, Y.; Chen, Z.; Dang, W.; Tan, C.; Liu, Y.; Yin, J.; et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat. Nanotechnol. 2017, 12, 530–534. [Google Scholar] [CrossRef]
- Huang, H.; Feng, W.; Chen, Y. Two-dimensional biomaterials: Material science, biological effect and biomedical engineering applications. Chem. Soc. Rev. 2021, 50, 11381–11485. [Google Scholar] [CrossRef]
- Vogl, T.; Sripathy, K.; Sharma, A.; Reddy, P.; Sullivan, J.; Machacek, J.R.; Zhang, L.; Karouta, F.; Buchler, B.C.; Doherty, M.W.; et al. Radiation tolerance of two-dimensional material-based devices for space applications. Nat. Commun. 2019, 10, 1202. [Google Scholar] [CrossRef] [Green Version]
- Xiong, G.; He, P.; Wang, D.; Zhang, Q.; Chen, T.-f.; Fisher, T.S. Hierarchical Ni–Co Hydroxide Petals on Mechanically Robust Graphene Petal Foam for High-Energy Asymmetric Supercapacitors. Adv. Funct. Mater. 2016, 26, 5460–5470. [Google Scholar] [CrossRef]
- Das, S.; Sebastian, A.; Pop, E.; McClellan, C.J.; Franklin, A.D.; Grasser, T.; Knobloch, T.; Illarionov, Y.; Penumatcha, A.V.; Appenzeller, J.; et al. Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 2021, 4, 786–799. [Google Scholar] [CrossRef]
- Cheng, Z.; Cao, R.; Wei, K.; Yao, Y.; Liu, X.; Kang, J.; Dong, J.; Shi, Z.; Zhang, H.; Zhang, X. 2D Materials Enabled Next-Generation Integrated Optoelectronics: From Fabrication to Applications. Adv. Sci. 2021, 8, 2003834. [Google Scholar] [CrossRef]
- Li, H.; Wu, J.; Huang, X.; Lu, G.; Yang, J.; Lu, X.; Xiong, Q.; Zhang, H. Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy. ACS Nano 2013, 7, 10344–10353. [Google Scholar] [CrossRef]
- Resta, A.; Leoni, T.; Barth, C.; Ranguis, A.; Becker, C.; Bruhn, T.; Vogt, P.; Le Lay, G. Atomic Structures of Silicene Layers Grown on Ag(111): Scanning Tunneling Microscopy and Noncontact Atomic Force Microscopy Observations. Sci. Rep. 2013, 3, 2399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, P.; Lin, Q.; Duan, Y. Applications of Raman spectroscopy in two-dimensional materials. J. Innov. Opt. Health Sci. 2020, 13, 2030010. [Google Scholar] [CrossRef]
- Yu, Y.; Ma, L.; Cai, P.; Zhong, R.; Ye, C.; Shen, J.; Gu, G.; Chen, X.H.; Zhang, Y. High-temperature superconductivity in monolayer Bi2Sr2CaCu2O8+δ. Nature 2019, 575, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Minaee, S.; Boykov, Y.; Porikli, F.M.; Plaza, A.J.; Kehtarnavaz, N.; Terzopoulos, D. Image Segmentation Using Deep Learning: A Survey. ITPAM 2022, 44, 3523–3542. [Google Scholar] [CrossRef] [PubMed]
- Takos, G. A Survey on Deep Learning Methods for Semantic Image Segmentation in Real-Time. arXiv 2020, arXiv:abs/2009.12942. [Google Scholar]
- Choudhary, K.; DeCost, B.L.; Chen, C.; Jain, A.; Tavazza, F.; Cohn, R.; Park, C.W.; Choudhary, A.N.; Agrawal, A.; Billinge, S.J.L.; et al. Recent advances and applications of deep learning methods in materials science. npj Comput. Mater. 2022, 8, 59. [Google Scholar] [CrossRef]
- Qin, X.; Zhang, Z.V.; Huang, C.; Dehghan, M.; Zaiane, O.R.; Jägersand, M. U2-Net: Going Deeper with Nested U-Structure for Salient Object Detection. arXiv 2020, arXiv:abs/2005.09007. [Google Scholar] [CrossRef]
- Xue, D.; Balachandran, P.V.; Hogden, J.; Theiler, J.; Xue, D.; Lookman, T. Accelerated search for materials with targeted properties by adaptive design. Nat. Commun. 2016, 7, 11241. [Google Scholar] [CrossRef] [Green Version]
- Cherukara, M.J.; Narayanan, B.; Kinaci, A.; Sasikumar, K.; Gray, S.K.; Chan, M.K.Y.; Sankaranarayanan, S.K.R.S. Ab Initio-Based Bond Order Potential to Investigate Low Thermal Conductivity of Stanene Nanostructures. J. Phys. Chem. Lett. 2016, 7, 3752–3759. [Google Scholar] [CrossRef]
- Li, Y.-h.; Kong, Y.; Peng, J.; Yu, C.-b.; Li, Z.; Li, P.; Liu, Y.; Gao, C.; Wu, R. Rapid identification of two-dimensional materials via machine learning assisted optic microscopy. J. Mater. 2019, 5, 413–421. [Google Scholar] [CrossRef]
- Mao, Y.; Dong, N.; Wang, L.; Chen, X.; Wang, H.; Wang, Z.; Kislyakov, I.M.; Wang, J. Machine Learning Analysis of Raman Spectra of MoS2. Nanomaterials 2020, 10, 2223. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Zheng, Y.; Yang, K.; Zhang, Q.; Shah, A.A.; Wu, Z.; Sun, Y.; Feng, L.; Chen, D.; Xiao, Z.; et al. Machine learning–assisted molecular design and efficiency prediction for high-performance organic photovoltaic materials. Sci. Adv. 2019, 5, eaay4275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuo, Y.; Mansouri Tehrani, A.; Oliynyk, A.O.; Duke, A.C.; Brgoch, J. Identifying an efficient, thermally robust inorganic phosphor host via machine learning. Nat. Commun. 2018, 9, 4377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, J.; Chu, X.; Sun, X.; Xu, K.; Deng, H.-X.; Chen, J.; Wei, Z.; Lei, M. Machine learning in materials science. InfoMat 2019, 1, 338–358. [Google Scholar] [CrossRef] [Green Version]
- Han, B.; Lin, Y.; Yang, Y.; Mao, N.; Li, W.; Wang, H.; Yasuda, K.; Wang, X.; Fatemi, V.; Zhou, L.; et al. Deep-Learning-Enabled Fast Optical Identification and Characterization of 2D Materials. Adv. Mater. 2020, 32, 2000953. [Google Scholar] [CrossRef]
- Wu, B.; Wang, L.; Gao, Z. A two-dimensional material recognition image algorithm based on deep learning. In Proceedings of the 2019 International Conference on Information Technology and Computer Application (ITCA), Guangzhou, China, 20–22 December 2019; pp. 247–252. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. ITPAM 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Masubuchi, S.; Watanabe, E.; Seo, Y.-S.; Okazaki, S.; Sasagawa, T.; Watanabe, K.; Taniguchi, T.; Machida, T. Deep-learning-based image segmentation integrated with optical microscopy for automatically searching for two-dimensional materials. Npj 2d Mater. Appl. 2020, 4, 3. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R.B. Mask R-CNN. ITPAM 2020, 42, 386–397. [Google Scholar] [CrossRef]
- Zhu, L.; Tang, J.; Li, B.; Hou, T.; Zhu, Y.; Zhou, J.; Wang, Z.; Zhu, X.; Yao, Z.; Cui, X.; et al. Artificial Neuron Networks Enabled Identification and Characterizations of 2D Materials and van der Waals Heterostructures. ACS Nano 2022, 16, 2721–2729. [Google Scholar] [CrossRef]
- Zhu, Z.; Xu, M.; Bai, S.; Huang, T.; Bai, X. Asymmetric Non-Local Neural Networks for Semantic Segmentation. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 593–602. [Google Scholar]
- Jung, J.; Na, J.; Park, H.K.; Park, J.-M.; Kim, G.; Lee, S.; Kim, H.-S. Super-resolving material microstructure image via deep learning for microstructure characterization and mechanical behavior analysis. npj Comput. Mater. 2021, 7, 96. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Kiarashinejad, Y.; Abdollahramezani, S.; Adibi, A. Deep learning approach based on dimensionality reduction for designing electromagnetic nanostructures. npj Comput. Mater. 2020, 6, 96. [Google Scholar] [CrossRef]
- Wu, S.; Wang, Z.; Zhang, H.; Cai, J.; Li, J. Deep Learning Accelerates the Discovery of Two-Dimensional Catalysts for Hydrogen Evolution Reaction. Energy Environ. Mater. 2021. [Google Scholar] [CrossRef]
- Xie, T.; Grossman, J.C. Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties. PhRvL 2018, 120 14, 145301. [Google Scholar] [CrossRef] [Green Version]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015, arXiv:abs/1505.04597. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6230–6239. [Google Scholar]
- Kim, S.-W.; Kook, H.-K.; Sun, J.-Y.; Kang, M.-C.; Ko, S. Parallel Feature Pyramid Network for Object Detection. In Proceedings of the ECCV, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Chen, L.-C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv 2017, arXiv:abs/1706.05587. [Google Scholar]
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the ECCV, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Yin, M.; Yao, Z.; Cao, Y.; Li, X.; Zhang, Z.; Lin, S.; Hu, H. Disentangled Non-Local Neural Networks. arXiv 2020, arXiv:abs/2006.06668. [Google Scholar]
- Fu, J.; Liu, J.; Tian, H.; Fang, Z.; Lu, H. Dual Attention Network for Scene Segmentation. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 3141–3149. [Google Scholar]
- Huang, L.; Yuan, Y.; Guo, J.; Zhang, C.; Chen, X.; Wang, J. Interlaced Sparse Self-Attention for Semantic Segmentation. arXiv 2019, arXiv:abs/1907.12273. [Google Scholar]
- Yuan, Y.; Chen, X.; Wang, J. Object-Contextual Representations for Semantic Segmentation. arXiv 2020, arXiv:abs/1909.11065. [Google Scholar]
- Fan, M.; Lai, S.; Huang, J.; Wei, X.; Chai, Z.; Luo, J.; Wei, X. Rethinking BiSeNet For Real-time Semantic Segmentation. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 9711–9720. [Google Scholar]
- Yu, C.; Gao, C.; Wang, J.; Yu, G.; Shen, C.; Sang, N. BiSeNet V2: Bilateral Network with Guided Aggregation for Real-time Semantic Segmentation. Int. J. Comput. Vis. 2021, 129, 3051–3068. [Google Scholar] [CrossRef]
- Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. ITPAM 2017, 39, 640–651. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Xiao, B.; Liu, D.; Wang, J. Deep High-Resolution Representation Learning for Human Pose Estimation. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 5686–5696. [Google Scholar]
- Lee, J.; Kim, D.; Ponce, J.; Ham, B. SFNet: Learning Object-Aware Semantic Correspondence. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 2273–2282. [Google Scholar]
- Liu, Y.; Chu, L.; Chen, G.; Wu, Z.; Chen, Z.; Lai, B.; Hao, Y. PaddleSeg: A High-Efficient Development Toolkit for Image Segmentation. arXiv 2021, arXiv:abs/2101.06175. [Google Scholar]
- Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes Dataset for Semantic Urban Scene Understanding. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 3213–3223. [Google Scholar]
- Taghanaki, S.A.; Abhishek, K.; Cohen, J.P.; Cohen-Adad, J.; Hamarneh, G. Deep semantic segmentation of natural and medical images: A review. Artif. Intell. Rev. 2020, 54, 137–178. [Google Scholar] [CrossRef]
- Huang, H.; Lin, L.; Tong, R.; Hu, H.; Zhang, Q.; Iwamoto, Y.; Han, X.; Chen, Y.-W.; Wu, J. UNet 3+: A Full-Scale Connected UNet for Medical Image Segmentation. In Proceedings of the ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 1055–1059. [Google Scholar]
- Ma, J. Segmentation Loss Odyssey. arXiv 2020, arXiv:abs/2005.13449. [Google Scholar]
- Saito, Y.; Shin, K.; Terayama, K.; Desai, S.; Onga, M.; Nakagawa, Y.; Itahashi, Y.M.; Iwasa, Y.; Yamada, M.; Tsuda, K. Deep-learning-based quality filtering of mechanically exfoliated 2D crystals. NPJ Comput. Mater. 2019, 5, 124. [Google Scholar] [CrossRef] [Green Version]
- Gui, J.; Sun, Z.; Wen, Y.; Tao, D.; Ye, J. A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications. arXiv 2021, arXiv:abs/2001.06937. [Google Scholar] [CrossRef]
- Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Liu, Y.; Jin, L.; Lai, S. Automatic labeling of large amounts of handwritten characters with gate-guided dynamic deep learning. Pattern Recognit. Lett. 2019, 119, 94–102. [Google Scholar] [CrossRef]
- Zhou, Z.-H. A brief introduction to weakly supervised learning. Natl. Sci. Rev. 2018, 5, 44–53. [Google Scholar] [CrossRef]
- Guo, M.-H.; Xu, T.; Liu, J.; Liu, Z.-N.; Jiang, P.-T.; Mu, T.-J.; Zhang, S.-H.; Martin, R.R.; Cheng, M.-M.; Hu, S. Attention Mechanisms in Computer Vision: A Survey. arXiv 2022, arXiv:abs/2111.07624. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, D.; Zhou, P.; Zhang, T. A Survey of Model Compression and Acceleration for Deep Neural Networks. arXiv 2017, arXiv:abs/1710.09282. [Google Scholar]
- Tan, C.; Sun, F.; Kong, T.; Zhang, W.; Yang, C.; Liu, C. A Survey on Deep Transfer Learning. arXiv 2018, arXiv:abs/1808.01974. [Google Scholar]
- Zaidi, S.S.A.; Ansari, M.S.; Aslam, A.; Kanwal, N.; Asghar, M.N.; Lee, B. A Survey of Modern Deep Learning based Object Detection Models. Digit. Signal Process. 2022, 126, 103514. [Google Scholar] [CrossRef]
- Lateef, F.; Ruichek, Y. Survey on semantic segmentation using deep learning techniques. Neurocomputing 2019, 338, 321–348. [Google Scholar] [CrossRef]
- Geiger, M.; Jacot, A.; Spigler, S.; Gabriel, F.; Sagun, L.; d’Ascoli, S.; Biroli, G.; Hongler, C.; Wyart, M. Scaling description of generalization with number of parameters in deep learning. J. Stat. Mech. Theory Exp. 2020, 2020, 023401. [Google Scholar] [CrossRef] [Green Version]
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Lei, T.; Wang, R.; Wan, Y.; Du, X.; Meng, H.; Nandi, A.K. Medical Image Segmentation Using Deep Learning: A Survey. IET Image Process. 2022, 16, 1243–1267. [Google Scholar]
Models | Backbone Network | GFOPs | Params (M) | MIoU (%) | Accuracy (%) | Kappa (%) | Dice (%) |
---|---|---|---|---|---|---|---|
2DU2-Net† | - | 180.91 | 12.46 | 94.18% | 99.03% | 95.72% | 96.97% |
U2-Net† | - | 51.32 | 4.36 | 93.74% | 98.85% | 95.38% | 96.73% |
U-Net | - | 124.46 | 51.14 | 92.76% | 98.82% | 94.67% | 96.19% |
PSPNet | ResNet50 | 265.59 | 259.03 | 94.36% | 99.02% | 95.88% | 97.07% |
PFPNNet | ResNet101 | 144.76 | 109.51 | 94.10% | 99.06% | 95.68% | 96.93% |
DeepLabV3 | ResNet50 | 162.69 | 149.23 | 93.20% | 99.00% | 95.01% | 96.43% |
DeepLabV3+ | ResNet50 | 114.15 | 102.20 | 94.97% | 99.10% | 96.35% | 97.40% |
DNLNet | ResNet50 | 209.68 | 191.00 | 93.80% | 99.02% | 95.48% | 96.76% |
DANNet | ResNet50 | 199.21 | 181.25 | 94.87% | 99.13% | 96.17% | 97.34% |
ISANet | ResNet50 | 159.23 | 144.03 | 93.76% | 98.84% | 95.31% | 96.74% |
OCRNet | HRNet18 | 52.98 | 64.20 | 94.75% | 99.03% | 96.09% | 97.28% |
STDC-Seg | STDC1 | 8.45 | 31.60 | 93.07% | 98.88% | 94.87% | 96.37% |
BiSeNetv2 | - | 8.06 | 8.88 | 91.45% | 98.68% | 93.67% | 95.46% |
FCN | HRNet18 | 18.51 | 36.89 | 94.50% | 99.08% | 96.02% | 97.14% |
HRNet | HRNet48 | 161.51 | 267.34 | 94.34% | 99.07% | 95.77% | 97.06% |
SFNet | ResNet18 | 68.37 | 52.66 | 93.86% | 99.00% | 95.45% | 96.80% |
ANN | ResNet50 | 204.35 | 185.56 | 94.30% | 99.10% | 95.81% | 97.04% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhang, H.; Zhou, S.; Liu, G.; Zhu, J. Deep Learning-Based Layer Identification of 2D Nanomaterials. Coatings 2022, 12, 1551. https://doi.org/10.3390/coatings12101551
Zhang Y, Zhang H, Zhou S, Liu G, Zhu J. Deep Learning-Based Layer Identification of 2D Nanomaterials. Coatings. 2022; 12(10):1551. https://doi.org/10.3390/coatings12101551
Chicago/Turabian StyleZhang, Yu, Heng Zhang, Shujuan Zhou, Guangjie Liu, and Jinlong Zhu. 2022. "Deep Learning-Based Layer Identification of 2D Nanomaterials" Coatings 12, no. 10: 1551. https://doi.org/10.3390/coatings12101551
APA StyleZhang, Y., Zhang, H., Zhou, S., Liu, G., & Zhu, J. (2022). Deep Learning-Based Layer Identification of 2D Nanomaterials. Coatings, 12(10), 1551. https://doi.org/10.3390/coatings12101551