Recent Advances of Sustainable Textile Fabric Coatings for UV Protection Properties
Abstract
:1. Introduction
2. Textile Fabric Coatings for UV Protection
2.1. Graphene-Based Coatings
2.2. Spherical Nanoparticles-Based Coatings
2.3. Sustainable Nanotube-Based Coatings
3. Mechanistic UV Protection Action
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Attia, N.F.; Mousa, M. Synthesis of smart coating for furniture textile and their flammability and hydrophobic properties. Prog. Org. Coat. 2017, 110, 204–209. [Google Scholar] [CrossRef]
- Attia, N.F.; Ebissy, A.A.E.; Morsy, M.S.; Sadak, R.A.; Gamal, H. Influence of textile fabrics structures on thermal, UV shielding, and mechanical properties of textile fabrics coated with sustainable coating. J. Nat. Fibers 2021, 18, 2189–2196. [Google Scholar] [CrossRef]
- Zeng, F.; Qin, Z.; Chen, Y.; Shan, X. Constructing polyaniline nanowire arrays as efficient traps on graphene sheets to promote compound synergetic effect in the assembled coating for multifunctional protective cotton fabrics. Chem. Eng. J. 2021, 426, 130819. [Google Scholar] [CrossRef]
- Dupont, E.; Gomez, J.; Bilodeau, D. Beyond UV radiation: A skin under challenge. Int. J. Cosmet. Sci. 2013, 35, 224–232. [Google Scholar] [CrossRef]
- Ravanat, J.; Douki, T.; Cadet, J. Direct and indirect effects of UV radiation on DNA and its components. J. Photochem. Photo. B Biol. 2001, 63, 88–102. [Google Scholar] [CrossRef]
- D’Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV radiation and the skin. Int. J. Mol. Sci. 2013, 14, 12222–12248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.; Liu, T.; Wang, D.; Liu, Y.; Hu, L. Silsesquioxane materials as sun protection factor ingredients and as films for greenhouse covers. Mater. Sci. Forum 2009, 610–613, 104–108. [Google Scholar] [CrossRef]
- Paul, N.D.; Gwynn-Jones, D. Ecological roles of solar UV radiation towards an integrated approach. Trends Ecol. Evol. 2003, 18, 48–55. [Google Scholar] [CrossRef]
- de Gruijl, F.R. Skin cancer and solar UV radiation. Eur. J. Cancer 1999, 35, 2003–2009. [Google Scholar] [CrossRef]
- Attia, N.F.; Moussa, M.; Sheta, A.M.F.; Taha, R.; Gamal, H. Synthesis of effective multifunctional textile based on silica nanoparticles. Prog. Org. Coat. 2017, 106, 41–49. [Google Scholar] [CrossRef]
- Poon, C.K.; Kan, C.K. Effects of TiO2 and curing temperatures on flame retardant finishing of cotton. Carbohyd. Polym. 2017, 121, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Attia, N.F.; Moussa, M.; Sheta, A.M.F.; Taha, R.; Gamal, H. Effect of different nanoparticles based coating on the performance of textile properties. Prog. Org. Coat. 2017, 104, 72–80. [Google Scholar] [CrossRef]
- United Nations Transforming Our World: The 2030 Agenda for sustainable Development. Available online: https://sdgs.un.org/2030agenda (accessed on 12 October 2022).
- Saravanan, D. UV protection textile materials. Aut. Res. J. 2007, 7, 53–62. [Google Scholar]
- Li, M.; Li, G.; Jiang, J.; Zhang, Z.; Dai, X.; Mai, K. Ultraviolet resistance and antimicrobial properties of ZnO in the polypropylene materials: A review. J. Mater. Sci. Technol. 2015, 31, 331–339. [Google Scholar] [CrossRef]
- Babaahmadi, V.; Majid, M. Reduced graphene oxide/SnO2 nanocomposite on PET surface: Synthesis, characterization and application as an electro-conductive and ultraviolet blocking textile. Colloids Surf. A Physicochem. Eng. Asp. 2016, 506, 507–513. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, H.; Zhou, H.; Wang, K.; Wang, S. Natural flat cocoon materials constructed by eri silkworm with high strength and excellent anti-ultraviolet performance. J. Eng. Fibers Fabr. 2020, 15, 1558925020978652. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Calizo, I.; Balandin, A.A.; Bao, W.; Miao, F.; Lau, C.N. Temperature dependence of the raman spectra of graphene and graphene multilayers. Nano Lett. 2007, 7, 2645–2649. [Google Scholar] [CrossRef]
- Shi, Y.M.; Li, L.J. Chemically modified graphene: Flame retardant or fuel for combustion? J. Mater. Chem. 2011, 21, 3277–3279. [Google Scholar] [CrossRef]
- Huang, G.; Gao, J.; Wang, X.; Liang, H.; Ge, C. How can graphene reduce the flammability of polymer nanocomposites? Mater. Lett. 2012, 66, 187–189. [Google Scholar] [CrossRef]
- Siddique, J.A.; Attia, N.F.; Tyagi, N.; Geckeler, K.E. Exfoliated graphene sheets: Polymer nanoparticles as a tool and their anti-proliferative activity. ChemistrySelect 2019, 4, 13204–13209. [Google Scholar] [CrossRef]
- Attia, N.F.; Abdel Hady, K.; Elashery, S.E.A.; Hashem, H.M.; Oh, H.; Refaat, A.M.; Abdel Hady, A. Greener synthesis route and characterization of smart hybrid graphene based thin films. Surf. Interf. 2020, 21, 100681. [Google Scholar] [CrossRef]
- ElSawy, A.M.; Attia, N.F.; Mohamed, H.I.; Mohsen, M.; Talaat, M.H. Innovative coating based on graphene and their decorated nanoparticles for medical stent applications. Mater. Sci. Eng. C 2019, 96, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Elashery, S.; Attia, N.F.; Mohamed, G.; Omar, M.; Tayea, H. Hybrid nanocomposite based graphene sensor for ultrasensitive clomipramine HCl detection. Electroanalysis 2021, 33, 2361–2371. [Google Scholar] [CrossRef]
- Attia, N.F.; Eid, A.M.; Soliman, M.A.; Nagy, M. Exfoliation and decoration of graphene sheets with silver nanoparticles and their antibacterial properties. J. Polym. Environ. 2018, 26, 1072–1077. [Google Scholar] [CrossRef]
- Attia, N.F.; Diab, M.A.; Attia, A.S.; El-Shahat, M.F. Greener approach for fabrication of antibacterial graphene-polypyrrole nanoparticle adsorbent for removal of Mn2+ from aqueous solution. Synth. Met. 2021, 282, 116951. [Google Scholar] [CrossRef]
- Attia, N.F.; Elashery, S.E.A.; Zakria, A.M.; Eltaweil, A.S.; Oh, H. Recent advances in graphene sheets as new generation of flame-retardant materials. Mater. Sci. Eng. B 2021, 274, 115460. [Google Scholar] [CrossRef]
- Attia, N.F.; Park, J.; Oh, H. Facile tool for green synthesis of graphene sheets and their smart free-standing UV protective film. Appl. Surf. Sci. 2018, 458, 425–430. [Google Scholar] [CrossRef]
- Siddique, J.A.; Attia, N.F.; Geckeler, K.E. Polymer nanoparticles as a tool for the exfoliation of graphene sheets. Mater. Lett. 2015, 158, 186–189. [Google Scholar] [CrossRef]
- Purkait, T.; Singh, G.; Singh, M.; Kumar, D.; Dey, R.S. Large area few-layer graphene with scalable preparation from waste biomass for high-performance supercapacitor. Sci. Rep. 2017, 7, 15239. [Google Scholar] [CrossRef] [Green Version]
- Shams, S.; Zhang, L.S.; Hu, R.; Zhang, R.; Zhu, J. Synthesis of graphene from biomass: A green chemistry approach. Mater. Lett. 2015, 161, 476–479. [Google Scholar] [CrossRef]
- Zhao, H.; Tian, M.; Hao, Y.; Qu, L.; Zhu, S.; Chen, S. Fast and facile graphene oxide grafting on hydrophobic polyamide fabric via electrophoretic deposition route. J. Mater. Sci. 2018, 53, 9504–9520. [Google Scholar] [CrossRef]
- Ouadil, B.; Cherkaoui, O.; Safi, M.; Zahouily, M. Surface modification of knit polyester fabric for mechanical, electrical and UV protection properties by coating with graphene oxide, graphene and graphene/silver nanocomposites. Appl. Surf. Sci. 2017, 414, 292–302. [Google Scholar] [CrossRef]
- Tang, X.; Tian, M.; Qu, L.; Zhu, S.; Guo, X.; Han, G.; Sun, K.; Hu, X.; Wang, Y.; Xu, X. Functionalization of cotton fabric with graphene oxide nanosheet and polyaniline for conductive and UV blocking properties. Synth. Met. 2015, 202, 82–88. [Google Scholar] [CrossRef]
- Zuo, D.; Li, G.; Ling, Y.; Cheng, S.; Xu, J.; Zhang, H. Durable UV-blocking Property of Cotton Fabrics with Nanocomposite Coating Based on Graphene Oxide/ZnO Quantum Dot via Water-based Self-assembly. Fibers Polym. 2021, 22, 1837–1843. [Google Scholar] [CrossRef]
- Liu, A.; Hu, X.; Yang, L.; Yang, X.; Dong, J.; Chen, S.; Tan, Y.; Hao, L.; Wang, R. The synergetic modification of surface micro-dissolution and cationization for fabricating cotton fabrics with high UV resistance and conductivity by enriched GO coating. Cellulose 2020, 27, 10489–10500. [Google Scholar] [CrossRef]
- Wang, S.-D.; Wang, K.; Ma, Q.; Qu, C.-X. Fabrication of the multifunctional durable silk fabric with synthesized graphene oxide nanosheets. Mater. Today Commun. 2020, 23, 100893. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, J.; Xu, J.; Miao, G.; Feng, L.; Zhang, Z.; Zhang, H. Synthesis and properties of cotton fabric functionalized by dimethyl phosphite and perfluorohexyl group grafted graphene oxide. Pigment. Resin Technol. 2019, 48, 515–522. [Google Scholar] [CrossRef]
- Amesimeku, J.; Song, W.; Wang, C. Fabrication of electrically conductive and improved UV-resistant aramid fabric via bioinspired polydopamine and graphene oxide coating. J. Text. Inst. 2019, 110, 1484–1492. [Google Scholar] [CrossRef]
- Shi, F.; Xu, J.; Zhang, Z. Study on UV-protection and hydrophobic properties of cotton fabric functionalized by graphene oxide and silane coupling agent. Pigment. Resin Technol. 2019, 48, 237–242. [Google Scholar] [CrossRef]
- Ji, Y.; Chen, G.; Xing, T. Rational design and preparation of flame retardant silk fabrics coated with reduced graphene oxide. Appl. Surf. Sci. 2019, 474, 203–210. [Google Scholar] [CrossRef]
- Pan, N.; Liu, Y.; Ren, X.; Huang, T.-S. Fabrication of cotton fabrics through in-situ reduction of polymeric N-halamine modified graphene oxide with enhanced ultraviolet-blocking, self-cleaning, and highly efficient, and monitorable antibacterial properties. Colloids Surf. A Physicochem. Eng. Asp. 2018, 555, 765–771. [Google Scholar] [CrossRef]
- Cao, J.; Wang, C. Multifunctional surface modification of silk fabric via graphene oxide repeatedly coating and chemical reduction method. Appl. Surf. Sci. 2017, 405, 380–388. [Google Scholar] [CrossRef]
- Pandiyarasan, V.; Archana, J.; Pavithra, A.; Ashwin, V.; Navaneethan, M.; Hayakawa, Y.; Ikeda, H. Hydrothermal growth of reduced graphene oxide on cotton fabric for enhanced ultraviolet protection applications. Mater. Lett. 2017, 188, 123–126. [Google Scholar] [CrossRef]
- Tian, M.; Hu, X.; Qu, L.; Du, M.; Zhu, S.; Sun, Y.; Han, G. Ultraviolet Protection Cotton Fabric Achieved via Layer-by-layer Self-assembly of Graphene Oxide and Chitosan. Appl. Surf. Sci. 2016, 377, 141–148. [Google Scholar] [CrossRef]
- Berendjchi, A.; Khajavi, R.; Yousefi, A.A.; Yazdanshenas, M.E. Improved continuity of reduced graphene oxide on polyester fabric byuse of polypyrrole to achieve a highly electro-conductive and flexible substrate. Appl. Surf. Sci. 2016, 363, 264–272. [Google Scholar] [CrossRef]
- Tian, M.; Hu, X.; Qu, L.; Zhu, S.; Sun, Y.; Han, G. Versatile and ductile cotton fabric achieved via layer-by-layer self-assembly by consecutive adsorption of graphene doped PEDOT: PSS and chitosan. Carbon 2016, 96, 1166–1174. [Google Scholar] [CrossRef]
- Sundaresan, K.; Sivakumar, A.; Vigneswaran, C.; Ramachandran, T. Influence of nano titanium dioxide finish, prepared by sol-gel technique, on the ultraviolet protection, antimicrobial, and self-cleaning characteristics of cotton fabrics. Ind. Text. 2012, 41, 259–277. [Google Scholar] [CrossRef]
- Khurana, N.; Adivarekar, R.V. Effect of dispersing agents on synthesis of nano titanium oxide and its application for antimicrobial property. Fiber Polym. 2013, 14, 1094–1100. [Google Scholar] [CrossRef]
- Shaheen, T.I.; El-Naggar, M.E.; Abdelgawad, A.M.; Hebeish, A. Durable antibacterial and UV protections of in situ synthesized zincoxide nanoparticles onto cotton fabrics. Int. J. Biol. Macro. 2016, 83, 426–432. [Google Scholar] [CrossRef]
- Wang, Y.; Li, B.; Xu, C. Fabrication of superhydrophobic surface of hierarchical ZnO thin films by using stearic acid. Superlatt. Microstruct. 2012, 51, 128–134. [Google Scholar] [CrossRef]
- Radetis, M. Functionalization of textile materials with TiO2 nanoparticles. J. Photochem. Photobiol. C Photochem. Rev. 2013, 16, 62–76. [Google Scholar] [CrossRef]
- Rahimi, N.; Pax, R.A.; Mac, E.; Gray, A. Review of functional titanium oxides TiO2 and its modifications. Prog. Solid State Chem. 2016, 44, 86–105. [Google Scholar] [CrossRef]
- Babaahmadi, V.; Abuzade, R.A.; Majid, M. Enhanced ultraviolet-protective textiles based on reduced graphene oxide-silver nanocomposites on polyethylene terephthalate using ultrasonic-assisted in-situ thermal synthesis. J. Appl. Polym. Sci. 2022, 139, 52196. [Google Scholar] [CrossRef]
- Porrawatkul, P.; Pimsen, R.; Kuyyogsuy, A.; Teppaya, N.; Noypha, A.; Chanthai, S.; Nuengmatcha, P. Microwave-assisted synthesis of Ag/ZnO nanoparticles using Averrhoa carambola fruit extract as the reducing agent and their application in cotton fabrics with antibacterial and UV-protection properties. RSC Adv. 2022, 12, 15008–15019. [Google Scholar] [CrossRef] [PubMed]
- Attia, N.F.; Soliman, M.H.; El-Sakka, S.S. Facile Route for synthesis of novel flame retardant, reinforcement and antibacterial textile fabrics coatings. Coatings 2020, 10, 576. [Google Scholar] [CrossRef]
- Attia, N.F.; Ahmed, H.E.; El Ebissy, A.A.; El Ashery, S.E.A. Green and novel approach for enhancing flame retardancy, UV protection and mechanical properties of fabrics utilized in historical textile fabrics conservation. Prog. Org. Coat. 2022, 166, 106822. [Google Scholar] [CrossRef]
- Elmetwaly, T.E.; Darwish, S.S.; Attia, N.F.; Hassan, R.R.A.; El Ebissy, A.A.; Eltaweil, A.S.; Omer, A.M.; El-Seedi, H.R.; Elashery, S.E.A. Cellulose nanocrystals and its hybrid composite with inorganic nanotubes as green tool for historical paper conservation. Prog. Org. Coat. 2022, 168, 106890. [Google Scholar] [CrossRef]
- Jung, M.; Park, J.; Lee, K.; Attia, N.F.; Oh, H. Effective synthesis route of renewable nanoporous carbon adsorbent for high energy gas storage and CO2/N2 selectivity. Renew. Energy 2020, 161, 30–42. [Google Scholar] [CrossRef]
- Attia, N.F.; Rao, J.P.; Geckeler, K.E. Nanodiamond–polymer nanoparticle composites and their thin films. J. Nanopart. Res. 2014, 16, 2361. [Google Scholar] [CrossRef]
- El-Sayed, W.G.; Attia, N.F.; Ismail, I.; El-Khayat, M.; Nogami, M.; Abdel-Mottaleb, M.S.A. Innovative and cost-effective nanodiamond based molten salt nanocomposite as efficient heat transfer fluid and thermal energy storage media. Renew. Energy 2021, 177, 596–602. [Google Scholar] [CrossRef]
- El-Shemy, N.S.; El-Hawary, N.S.; Haggag, K.; ElSayed, H. Utilization of lanolin in microwave-assisted pigment printing of textiles. Egypt. J. Chem. 2020, 63, 3259–3269. [Google Scholar]
- Li, Y.; Arumugam, S.; Krishnan, C.; Charlton, M.D.B.; Beeby, S.P. Encapsulated textile organic solar cells fabricated by spray coating. ChemistrySelect 2019, 4, 407–412. [Google Scholar] [CrossRef]
- Choi, Y.; Seong, K.-D.; Piao, Y. Metal−Organic Decomposition ink for printed electronics. Adv. Mater. Interf. 2019, 6, 1901002. [Google Scholar] [CrossRef] [Green Version]
- Farraj, Y.; Grouchko, M.; Magdassi, S. Self-reduction of a copper complex MOD ink for inkjet printing conductive patterns on plastics. Chem. Commun. 2015, 51, 1587–1590. [Google Scholar] [CrossRef]
- Choi, Y.-H.; Lee, J.; Kim, S.J.; Yeon, D.-H.; Byun, Y. Highly conductive polymer-decorated Cu electrode films printed on glass substrates with novel precursor-based inks and pastes. J. Mater. Chem. 2012, 22, 3624–3631. [Google Scholar] [CrossRef]
- Vaseem, M.; Lee, S.; Kim, J.-G.; Hahn, Y.-B. Silver-ethanolamine-formate complex based transparent and stable ink: Electrical assessment with microwave plasma vs thermal sintering. Chem. Eng. J. 2016, 306, 796–805. [Google Scholar] [CrossRef]
- Cano-Raya, C.; Denchev, Z.Z.; Cruz, S.F.; Viana, J.C. Chemistry of solid metal-based inks and pastes for printed electronics—A review. Appl. Mater. Today 2019, 15, 416–430. [Google Scholar] [CrossRef]
Sample Code | UPF Value | Ref. |
---|---|---|
Polyamide weave fabric | 2.5 | [33] |
Polyamide weave fabric/rGO | 500 | [33] |
PANI/GO/cotton fabric | 445 | [35] |
GO/cotton fabric | 425 | [35] |
Cotton fabric | 7 | [35] |
GO/ZnO QD/PVA/cotton fabric | 61 | [36] |
Uncoated cotton fabric | 15 | [36] |
Cotton fabric/GO | 40 | [36] |
Cotton fabric/ZnO QD | 33.6 | [36] |
Pristine cotton fabric | 24 | [37] |
Cotton fabric/rGO | 70 | [37] |
Cationized cotton fabric/rGO | 220 | [37] |
Synergistically modified cotton fabric/rGO | 488 | [37] |
Silk fabric/GO | 445 | [38] |
Silk fabric | 4 | [38] |
Untreated cotton fabric | 13 | [39] |
GO-multi/cotton fabric | 253 | [39] |
rGO/cotton fabric | 500 | [39] |
AF/rGO/PDA | 73 | [40] |
AF/PDA | 44 | [40] |
Pristine AF | 37 | [40] |
Cotton fabric/GO | 187 | [41] |
rGO/silk fabric | 55 | [42] |
Uncoated silk fabric | 6 | [42] |
rGO/cotton fabric (after chlorination) | 132 | [43] |
rGO/cotton fabric (before laundering) | 443 | [45] |
rGO/cotton fabric (after laundering) | 422 | [45] |
Pristine PET | 34 | [46] |
PET/GO | 96 | [46] |
PET/rGO/SnO2 | 217 | [46] |
Cotton fabric/GO/chitosan | 452 | [16] |
Uncoated cotton fabric | 9 | [16] |
PET | 23 | [47] |
PET/rGO/PPY | 73 | [47] |
Cotton fabric/graphene/PEDOT:PSS/chitosan | 312 | [48] |
Pristine cotton fabric | 9 | [48] |
TiO2 NP-ZnO NP/textile fabric | 58 | [12] |
TiO2NP-ZnONP | 19 | [12] |
Uncoated textile fabric | 9 | [12] |
SiO2NP-AgNPs/cotton fabric | 124 | [10] |
cotton fabric/binder | 20 | [10] |
Uncoated cotton fabric | 9 | [10] |
Sample Code | UPF Value |
---|---|
VW | 3.5 |
VW-CH-RH-SNP-10 | 5.2 |
VW-CH-RH-SNP-20 | 6.6 |
VW-CH-RH-SNP-30 | 12.6 |
VB | 4.7 |
VB-CH-RH-SNP-10 | 6 |
VB-CH-RH-SNP-20 | 6.5 |
VB-CH-RH-SNP-30 | 5.9 |
PSW | 5.7 |
PSW-CH-RH-SNP-10 | 8.7 |
PSW-CH-RH-SNP-20 | 13.6 |
PSW-CH-RH-SNP-30 | 14.7 |
PSB | 3.6 |
PSB-CH-RH-SNP-10 | 7.9 |
PSB-CH-RH-SNP-20 | 10.5 |
PSB-CH-RH-SNP-30 | 15.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Attia, N.F.; Osama, R.; Elashery, S.E.A.; Kalam, A.; Al-Sehemi, A.G.; Algarni, H. Recent Advances of Sustainable Textile Fabric Coatings for UV Protection Properties. Coatings 2022, 12, 1597. https://doi.org/10.3390/coatings12101597
Attia NF, Osama R, Elashery SEA, Kalam A, Al-Sehemi AG, Algarni H. Recent Advances of Sustainable Textile Fabric Coatings for UV Protection Properties. Coatings. 2022; 12(10):1597. https://doi.org/10.3390/coatings12101597
Chicago/Turabian StyleAttia, Nour F., Rokaya Osama, Sally E. A. Elashery, Abul Kalam, Abdullah G. Al-Sehemi, and Hamed Algarni. 2022. "Recent Advances of Sustainable Textile Fabric Coatings for UV Protection Properties" Coatings 12, no. 10: 1597. https://doi.org/10.3390/coatings12101597
APA StyleAttia, N. F., Osama, R., Elashery, S. E. A., Kalam, A., Al-Sehemi, A. G., & Algarni, H. (2022). Recent Advances of Sustainable Textile Fabric Coatings for UV Protection Properties. Coatings, 12(10), 1597. https://doi.org/10.3390/coatings12101597