Preparation of Zn5Mo2O11·5H2O@Sulfonated Graphene by Template Method and Its Anticorrosion Mechanism in Polyurethane Coatings
Abstract
:1. Introduction
2. Materials
2.1. Materials
2.2. Synthesis of SZMO@SG Composite
2.3. Preparation of Polyurethane Coatings Based on SZMO@SG
2.4. Characterization
3. Results and Discussion
3.1. Characterization of SZMO@SG
3.2. Corrosion Resistance of Coatings with SZMO@SG
3.3. Anticorrosion Mechanism of Polyurethane Coatings with SZMO@SG
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Trivedi, P.A.; Solanki, N.M.; Butani, N.; Parikh, P.A. Investigation on corrosion control of mild steel buried in soil by spent FCC catalyst coating. J. Ind. Eng. Chem. 2014, 20, 2264–2271. [Google Scholar] [CrossRef]
- Xu, B.; Liu, Y.; Yin, X.; Yang, W.; Chen, Y. Experimental and theoretical study of corrosion inhibition of 3-pyridinecarbozalde thiosemicarbazone for mild steel in hydrochloric acid. Corros. Sci. 2013, 74, 206–213. [Google Scholar] [CrossRef]
- Jegannathan, S.; Sankara Narayanan, T.S.N.; Ravichandran, K.; Rajeswari, S. Performance of zinc phosphate coatings obtained by cathodic electrochemical treatment in accelerated corrosion tests. Electrochim. Acta 2005, 51, 247–256. [Google Scholar] [CrossRef]
- De Freitas Cunha Lins, V.; de Andrade Reis, G.F.; de Araujo, C.R.; Matencio, T. Electrochemical impedance spectroscopy and linear polarization applied to evaluation of porosity of phosphate conversion coatings on electrogalvanized steels. Appl. Surf. Sci. 2006, 253, 2875–2884. [Google Scholar] [CrossRef]
- Kathavate, V.S.; Pawar, D.N.; Bagal, N.S.; Deshpande, P.P. Electrodeposition and characterization of nano ZnO incorporated phosphate coatings for the corrosion protection performance of low carbon steel. J. Alloys Compd. 2020, 823, 153812. [Google Scholar] [CrossRef]
- Kathavate, V.S.; Deshpande, P.P. Role of nano TiO2 and nano ZnO particles on enhancing the electrochemical and mechanical properties of electrochemically deposited phosphate coatings. Surf. Coat. Technol. 2020, 394, 125902. [Google Scholar] [CrossRef]
- Wu, Y.; Wen, S.; Chen, K.; Wang, J.; Wang, G.; Sun, K. Enhanced corrosion resistance of waterborne polyurethane containing sulfonated graphene/zinc phosphate composites. Prog. Org. Coat. 2019, 132, 409–416. [Google Scholar] [CrossRef]
- Gite, V.V.; Mahulikar, P.P.; Hundiwale, D.G. Preparation and properties of polyurethane coatings based on acrylic polyols and trimer of isophorone diisocyanate. Prog. Org. Coat. 2010, 68, 307–312. [Google Scholar] [CrossRef]
- Córdoba, C.A.; Collins, S.E.; Passeggi, M.C.G.; Vaillard, S.E.; Gugliotta, L.M.; Minari, R.J. Crosslinkable acrylic-melamine latex produced by miniemulsion polymerization. Prog. Org. Coat. 2018, 118, 82–90. [Google Scholar] [CrossRef]
- Li, J.; Ecco, L.; Delmas, G.; Whitehouse, N.; Collins, P.; Deflorian, F.; Pan, J. In-Situ AFM and EIS Study of Waterborne Acrylic Latex Coatings for Corrosion Protection of Carbon Steel. J. Electrochem. Soc. 2015, 162, 55–63. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Le, X.H.; Dao, P.H.; Decker, C.; Nguyen-Tri, P. Stability of acrylic polyurethane coatings under accelerated aging tests and natural outdoor exposure: The critical role of the used photo-stabilizers. Prog. Org. Coat. 2018, 124, 137–146. [Google Scholar] [CrossRef]
- Nguyen, T.N.L.; Do, T.V.; Nguyen, T.V.; Dao, P.H.; Trinh, V.T.; Mac, V.P.; Nguyen, A.H.; Dinh, D.A.; Nguyen, T.A.; Vo, T.K.A.; et al. Antimicrobial activity of acrylic polyurethane/Fe3O4-Ag nanocomposite coating. Prog. Org. Coat. 2019, 132, 15–20. [Google Scholar] [CrossRef]
- Ma, G.; Guan, T.; Hou, C.; Wu, J.; Wang, G.; Ji, X.; Wang, B. Preparation, properties and application of waterborne hydroxyl-functional polyurethane/acrylic emulsions in two-component coatings. J. Coat. Technol. Res. 2015, 12, 505–512. [Google Scholar] [CrossRef]
- Barbosa, J.V.; Veludo, E.; Moniz, J.; Mendes, A.; Magalhães, F.D.; Bastos, M.M.S.M. Low VOC self-crosslinking waterborne acrylic coatings incorporating fatty acid derivatives. Prog. Org. Coat. 2013, 76, 1691–1696. [Google Scholar] [CrossRef]
- Li, Z.; Li, J.; Cui, J.; Qiu, H.; Yang, G.; Zheng, S.; Yang, J. Dispersion and parallel assembly of sulfonated graphene in waterborne epoxy anticorrosion coatings. J. Mater. Chem. A 2019, 7, 17937–17946. [Google Scholar] [CrossRef]
- Mersagh Dezfuli, S.; Sabzi, M. Deposition of self-healing thin films by the sol–gel method: A review of layer-deposition mechanisms and activation of self-healing mechanisms. Appl. Phys. A-Mater. 2019, 125, 557. [Google Scholar] [CrossRef]
- Sabzi, M.; Far, S.M.; Dezfuli, S.M. Characterization of bioactivity behavior and corrosion responses of hydroxyapatite-ZnO nanostructured coating deposited on NiTi shape memory alloy. Ceram. Int. 2018, 44, 21395–21405. [Google Scholar] [CrossRef]
- Fernine, Y.; Salim, R.; Arrousse, N.; Haldhar, R.; El Hajjaji, F.; Kim, S.C.; Touhami, M.E.; Taleb, M. Anti-corrosion performance of Ocimum basilicum seed extract as environmental friendly inhibitors for mild steel in HCl solution: Evaluations of electrochemical, EDX, DFT and Monte Carlo. J. Mol. Liq. 2022, 355, 118867. [Google Scholar] [CrossRef]
- Haldhar, R.; Asrafali, S.P.; Raorane, C.J.; Periyasamy, T.; Kim, S.C. Performance of cross-linked polymers as a potential anticorrosive coating for low carbon steel in acidic condition: Experimental and computational studies. J. Mol. Liq. 2022, 360, 119384. [Google Scholar] [CrossRef]
- Liu, D.; Yang, Z.; Wang, Z.; Zhang, C. Synthesis and evaluation of corrosion resistance of molybdate-based conversion coatings on electroplated zinc. Surf. Coat. Technol. 2010, 205, 2328–2334. [Google Scholar] [CrossRef]
- Shahini, M.H.; Mohammadloo, H.E.; Ramezanzadeh, B. Recent advances in steel surface treatment via novel/green conversion coatings for anti-corrosion applications: A review study. J. Coat. Technol. Res. 2022, 19, 159–199. [Google Scholar] [CrossRef]
- Mohammadloo, H.E.; Sarabi, A.A. Titanium composite conversion coating formation on CRS In the presence of Mo and Ni ions: Electrochemical and microstructure characterizations. Appl. Surf. Sci. 2016, 387, 252–259. [Google Scholar] [CrossRef]
- Tsai, C.; Liu, J.; Chen, P.; Lin, C. A two-step roll coating phosphate/molybdate passivation treatment for hot-dip galvanized steel sheet. Corros. Sci. 2010, 52, 3385–3393. [Google Scholar] [CrossRef]
- Yao, Y.; Zhou, Y.; Zhao, C.; Han, Y.; Zhao, C. Preparation and Corrosion Resistance Property of Molybdate Conversion Coatings Containing SiO2 Nanoparticles. J. Electrochem. Soc. 2013, 160, 185–188. [Google Scholar] [CrossRef]
- Eduok, U.; Szpunar, J. Ultrasound-assisted synthesis of zinc molybdate nanocrystals and molybdate-doped epoxy/PDMS nanocomposite coatings for Mg alloy Protection. Ultrason. Sonochem. 2018, 44, 288–298. [Google Scholar] [CrossRef]
- Kapole, S.A.; Bhanvase, B.A.; Pinjari, D.V.; Gogate, P.R.; Kulkarni, R.D.; Sonawane, S.H.; Pandit, A.B. Investigation of corrosion inhibition performance of ultrasonically prepared sodium zinc molybdate nanopigment in two-pack epoxy-polyamide coating. Compos. Interfaces 2014, 21, 833–852. [Google Scholar] [CrossRef]
- Tedim, J.; Poznyak, S.K.; Kuznetsova, A.; Raps, D.; Hack, T.; Zheludkevich, M.L.; Ferreira, M.G.S. Enhancement of Active Corrosion Protection via Combination of Inhibitor-Loaded Nanocontainers. ACS Appl. Mater. Interfaces 2010, 2, 1528–1535. [Google Scholar] [CrossRef]
- Liu, A.; Tian, H.; Li, W.; Wang, W.; Gao, X.; Han, P.; Ding, R. Delamination and self-assembly of layered double hydroxides for enhanced loading capacity and corrosion protection performance. Appl. Surf. Sci. 2018, 462, 175–186. [Google Scholar] [CrossRef]
- Trung, V.Q.; Hoan, P.V.; Phung, D.Q.; Duc, L.M.; Hang, L.T.T. Double corrosion protection mechanism of molybdate-doped polypyrrole/montmorillonite nanocompos ites. J. Exp. Nanosci. 2014, 9, 282–292. [Google Scholar] [CrossRef] [Green Version]
- Alexander, L.; Otto, V.D.B.; Jan, W.; Iris, D.G.; Herman, T. A Multiple-Action Self-Healing Coating. Front. Mater. 2016, 2, 73. [Google Scholar]
- Chen, Z.; Yang, W.; Yin, X.; Chen, Y.; Liu, Y.; Xu, B. Corrosion protection of 304 stainless steel from a smart conducting polypyrrole coating doped with pH-sensitive molybdate-loaded TiO2 nanocontainers. Prog. Org. Coat. 2020, 146, 105750. [Google Scholar] [CrossRef]
- Leal, D.A.; Wypych, F.; Marino, C.E.B. Zinc-Layered Hydroxide Salt Intercalated with Molybdate Anions as a New Smart Nanocontainer for Active Corrosion Protection of Carbon Steel. ACS Appl. Mater. Interfaces 2020, 12, 19823–19833. [Google Scholar] [CrossRef] [PubMed]
- Olya, N.; Ghasemi, E.; Ramezanzadeh, B.; Mahdavian, M. Synthesis, characterizatio n and protective functioning of surface decorated Zn-Al layered double hydroxide with SiO2 nano-particles. Surf. Coat. Technol. 2020, 387, 125512. [Google Scholar] [CrossRef]
- Pérez-Page, M.; Yu, E.; Li, J.; Rahman, M.; Dryden, D.M.; Vidu, R.; Stroeve, P. Template-based syntheses for shape controlled nanostructures. Adv. Colloid Interface Sci. 2016, 234, 51–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oger, N.; Lin, Y.F.; Labrugère, C.; Grognec, E.L.; Rataboul, F.; Felpin, F. Practical and scalable synthesis of sulfonated graphene. Carbon 2016, 96, 342–350. [Google Scholar] [CrossRef]
- Li, Z.; Wu, S.; Lv, W.; Shao, J.; Kang, F.; Yang, Q. Graphene Emerges as a Versatile Template for Materials Preparation. Small 2016, 12, 2674–2688. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; He, F.; Wang, J.; Yu, H.; Zhao, L. Graphene oxide nanosheets as an effective template for the synthesis of porous TiO2 film in dye-sensitized solar cells. Appl. Surf. Sci. 2015, 358, 175–180. [Google Scholar] [CrossRef]
- Yu, D.; Wen, S.; Yang, J.; Wang, J.; Chen, Y.; Luo, J.; Wu, Y. RGO modified ZnAl-LDH as epoxy nanostructure filler: A novel synthetic approach to anticorrosive waterborne coating. Surf. Coat. Technol. 2017, 326, 207–215. [Google Scholar] [CrossRef]
- Ma, J.; Li, W.; Guan, S.; Liu, Q.; Li, Q.; Zhu, C.; Yang, T.; Ogunbiyia, A.T.; Ma, L. Efficient catalytic conversion of corn stalk and xylose into furfural over sulfonated graphene in γ-valerolactone. RSC Adv. 2019, 9, 10569–10577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naeimi, H.; Golestanzadeh, M. Highly sulfonated graphene and graphene oxide nanosheets as heterogeneous nanocatalysts in green synthesis of bisphenolic antioxidants under solvent free conditions. RSC Adv. 2014, 4, 56475–56488. [Google Scholar] [CrossRef]
- Singh, H.K.; Yeole, K.V.; Mhaske, S.T. Synthesis and characterization of layer-by-layer assembled magnesium zinc molybdate nanocontainer for anticorrosive application. Chem. Eng. J. 2016, 295, 414–426. [Google Scholar] [CrossRef]
- Yeganeh, M.; Omidi, M.; Rabizadeh, T. Anti-corrosion behavior of epoxy composite coatings containing molybdate-loaded mesoporous silica. Prog. Org. Coat. 2019, 126, 18–27. [Google Scholar] [CrossRef]
- Sheng, X.; Zhou, L.; Guo, X.; Bai, X.; Liu, X.; Liu, J.; Luo, C. Composition design and anticorrosion performance optimization of zinc molybdate pigments. Mater. Today Commun. 2021, 28, 102477. [Google Scholar] [CrossRef]
- Yan, H.; Wang, J.; Zhang, Y.; Hu, W. Preparation and inhibition properties of molybdate intercalated ZnAlCe layered double hydroxide. J. Alloys Compd. 2016, 678, 171–178. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, X.; Ai, Y.; Yu, Z.; Huang, W.; Chen, C.; Hayat, T.; Alsaedi, A.; Wang, X. Interaction of sulfonated graphene oxide with U(VI) studied by spectroscopic analysis and theoretical calculations. Chem. Eng. J. 2017, 310, 292–299. [Google Scholar] [CrossRef]
- Seo, D.C.; Jeon, I.; Jeong, E.S.; Jho, J.Y. Mechanical Properties and Chemical Durability of Nafion/Sulfonated Graphene Oxide/Cerium Oxide Composite Membranes for Fuel-Cell Applications. Polymers 2020, 12, 1375. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.; Xu, X.; Wang, J.; Hu, W. Preparation and inhibition behavior of ZnMoO4/reduced graphene oxide composite for Q235 steel in NaCl solution. Appl. Surf. Sci. 2019, 479, 835–846. [Google Scholar] [CrossRef]
- Xue, R.; Hong, W.; Pan, Z.; Jin, W.; Zhao, H.; Song, Y.; Zhou, J.; Liu, Y. Enhanced electrochemical performance of ZnMoO4/reduced graphene oxide composites as anode materials for lithium-ion batteries. Electrochim. Acta 2016, 222, 838–844. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Yang, W.; Xu, B.; Guo, Y.; Chen, Y.; Yin, X.; Liu, Y. Corrosion behaviors and physical properties of polypyrrole-molybdate coating electropolymerized on carbon steel. Prog. Org. Coat. 2018, 122, 159–169. [Google Scholar] [CrossRef]
- Hou, H.; Hu, X.; Liu, X.; Hu, W.; Meng, R.; Li, L. Sulfonated graphene oxide with improved ionic performances. Ionics 2015, 21, 1919–1923. [Google Scholar] [CrossRef]
- Umar, M.I.A.; Yap, C.C.; Awang, R.; Umar, A.A.; Salleh, M.M.; Yahaya, M. Formation of gold-coated multilayer graphene via thermal reduction. Mater. Lett. 2013, 106, 200–203. [Google Scholar] [CrossRef]
- Zhai, B.; Ma, Q.; Yang, L.; Huang, Y. Effects of Sintering Temperature on the Morphology and Photoluminescence of Eu3+ Doped Zinc Molybdenum Oxide Hydrate. J. Nanomater. 2018, 2018, 7418508. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.; Wang, D.; Wang, Q.; Yang, F.; Li, T.; Shi, Y.; Zhang, S.; Yang, B. Sensitivity of Corrosion Behavior for Fe-Based Amorphous Coating to Temperature and Chloride Concentration. Coatings 2021, 11, 331. [Google Scholar] [CrossRef]
- Wongpanya, P.; Saramas, Y.; Chumkratoke, C.; Wannakomol, A. Erosion–corrosion behaviors of 1045 and J55 steels in crude oil. J. Pet. Sci. Eng. 2020, 189, 106965. [Google Scholar] [CrossRef]
- Bhargava, G.; Ramanarayanan, T.A.; Bernasek, S.L. Imidazole-Fe Interaction in an Aqueous Chloride Medium: Effect of Cathodic Reduction of the Native Oxide. Langmuir 2010, 26, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Guitián, B.; Nóvoa, X.R.; Pintos, A. Development of conversion coatings on iron via corrosion in LiPF6 solution. Electrochim. Acta 2019, 304, 428–436. [Google Scholar] [CrossRef]
- Qiu, S.; Li, W.; Zheng, W.; Zhao, H.; Wang, L. Synergistic Effect of Polypyrrole-Intercalated Graphene for Enhanced Corrosion Protection of Aqueous Coating in 3.5% NaCl Solution. ACS Appl. Mater. Interfaces 2017, 9, 34294–34304. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, J.; Liu, L.; Li, Y.; Wang, F. Study of the failure mechanism of an epoxy coating system under high hydrostatic pressure. Corros. Sci. 2013, 74, 59–70. [Google Scholar] [CrossRef]
- Yeganeh, M.; Keyvani, A. The effect of mesoporous silica nanocontainers incorporation on the corrosion behavior of scratched polymer coatings. Prog. Org. Coat. 2016, 90, 296–303. [Google Scholar] [CrossRef]
- Conradi, M.; Kocijan, A.; Kek-Merl, D.; Zorko, M.; Verpoest, I. Mechanical and anticorrosion properties of nanosilica-filled epoxy-resin composite coatings. Appl. Surf. Sci. 2014, 292, 432–437. [Google Scholar] [CrossRef]
- Qiu, S.; Chen, C.; Cu, M.; Li, W.; Zhao, H.; Wang, L. Corrosion protection performance of waterborne epoxy coatings containing self-doped polyaniline nanofiber. Appl. Surf. Sci. 2017, 407, 213–222. [Google Scholar] [CrossRef]
- Kathavate, V.S.; Bagal, N.S.; Deshpande, P.P. Corrosion protection performance of nano-TiO2-containing phosphate coatings obtained by anodic electrochemical treatment. Corros. Rev. 2019, 37, 565–578. [Google Scholar] [CrossRef]
- Jain, R.; Bhagawati, B.; Khandagiri, P.; Shamshoddin, S.; Bhadu, M.K.; Rout, T.K.; Das, S. Anticorrosive and lubricating polyphenol coatings on galvanneal steel. Surf. Eng. 2016, 33, 410–427. [Google Scholar] [CrossRef]
- Bagal, N.S.; Kathavate, V.S.; Deshpande, P.P. Nano-TiO2 Phosphate Conversion Coatings—A Chemical Approach. Electrochem. Energy Technol. 2018, 4, 47–54. [Google Scholar] [CrossRef]
- Wang, G.; Wen, S.; Qian, S.; Wang, J.; Wang, C.; Chen, Y. Synthesis of novel nano hyperbranched polymer resin and its corrosion resistance in coatings. Prog. Org. Coat. 2020, 140, 105496. [Google Scholar] [CrossRef]
Samples | O (%) | Na (%) | Cl (%) | Fe (%) | Zn (%) | Mo (%) |
---|---|---|---|---|---|---|
control-0 h | 38.07 | 0.29 | 0.20 | 61.39 | 0.06 | 0.00 |
control-1008 h | 39.69 | 9.03 | 0.21 | 51.07 | 0.00 | 0.00 |
3 wt% SZMO@SG-0 h | 23.86 | 0.90 | 0.12 | 67.94 | 5.59 | 0.90 |
3 wt% SZMO@SG-1008 h | 40.12 | 10.71 | 2.44 | 39.86 | 5.87 | 0.99 |
Samples | Time | Ecorr (V) | Icorr (×10−3 mA/cm2) | ba | −bc | η (%) |
---|---|---|---|---|---|---|
control | 48 h | −0.586 | 6.71 | 10.166 | 2.603 | - |
144 h | −0.628 | 10.69 | 4.489 | 4.420 | - | |
840 h | −0.599 | 109.70 | 11.200 | 1.964 | - | |
1 wt% SZMO@SG | 48 h | −0.550 | 6.91 | 5.130 | 4.417 | −3.0 |
144 h | −0.598 | 8.74 | 8.904 | 2.990 | 18.2 | |
840 h | −0.583 | 11.63 | 8.487 | 3.397 | 89.4 | |
3 wt% SZMO@SG | 48 h | −0.453 | 1.71 | 4.581 | 2.921 | 74.5 |
144 h | −0.459 | 3.56 | 5.330 | 2.995 | 66.7 | |
840 h | −0.682 | 7.97 | 4.449 | 5.984 | 92.7 | |
5 wt% SZMO@SG | 48 h | −0.519 | 3.76 | 7.943 | 3.380 | 43.9 |
144 h | −0.573 | 10.08 | 13.861 | 3.282 | 4.9 | |
840 h | −0.646 | 11.26 | 9.996 | 4.642 | 89.7 |
Samples | Time | Rs (Ω·cm2) | CPEf (Ω−1 s−ncm−2) | nf | Rf (Ω·cm2) | CPEdl (Ω−1 s−ncm−2) | ndl | Rct (Ω·cm2) | P (%) |
---|---|---|---|---|---|---|---|---|---|
control | 48 h | 5.0 | 1.87 × 10−8 | 1.00 | 289.1 | 5.26 × 10−5 | 0.52 | 8608 | 0.75 |
144 h | 2.9 | 2.64 × 10−6 | 0.71 | 99.5 | 8.35 × 10−4 | 0.68 | 7021 | 1.41 | |
840 h | 3.6 | 5.35 × 10−7 | 0.92 | 17.9 | 9.48 × 10−4 | 0.51 | 2195 | 3.43 | |
1 wt% SZMO@SG | 48 h | 4.0 | 2.55 × 10−8 | 0.96 | 310.9 | 7.29 × 10−6 | 0.71 | 5730 | 0.78 |
144 h | 3.4 | 1.80 × 10−8 | 1.00 | 173.8 | 1.45 × 10−4 | 0.50 | 4964 | 1.46 | |
840 h | 5.2 | 1.29 × 10−8 | 1.00 | 483.6 | 2.12 × 10−4 | 0.46 | 7405 | 0.82 | |
3 wt% SZMO@SG | 48 h | 3.7 | 2.42 × 10−9 | 1.00 | 3201.0 | 4.01 × 10−6 | 0.56 | 283,100 | 0.01 |
144 h | 6.4 | 1.38 × 10−8 | 0.93 | 819.0 | 4.08 × 10−5 | 0.56 | 104,500 | 0.02 | |
840 h | 4.9 | 9.05 × 10−8 | 0.94 | 127.5 | 1.97 × 10−4 | 0.56 | 51,910 | 0.32 | |
5 wt% SZMO@SG | 48 h | 4.5 | 3.46 × 10−8 | 1.00 | 110.2 | 2.73 × 10−6 | 0.82 | 20,870 | 0.17 |
144 h | 5.5 | 2.02 × 10−7 | 0.89 | 49.6 | 5.02 × 10−4 | 0.52 | 7786 | 0.75 | |
840 h | 5.7 | 3.38 × 10−9 | 1.00 | 1124 | 6.21 × 10−5 | 0.64 | 1421 | 4.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Chen, K.; Wen, S.; Wang, J.; Xu, J.; Wang, S.; Li, W.; Song, J. Preparation of Zn5Mo2O11·5H2O@Sulfonated Graphene by Template Method and Its Anticorrosion Mechanism in Polyurethane Coatings. Coatings 2022, 12, 1634. https://doi.org/10.3390/coatings12111634
Zhao Z, Chen K, Wen S, Wang J, Xu J, Wang S, Li W, Song J. Preparation of Zn5Mo2O11·5H2O@Sulfonated Graphene by Template Method and Its Anticorrosion Mechanism in Polyurethane Coatings. Coatings. 2022; 12(11):1634. https://doi.org/10.3390/coatings12111634
Chicago/Turabian StyleZhao, Zihao, Kaimin Chen, Shaoguo Wen, Jihu Wang, Jinglu Xu, Song Wang, Weiping Li, and Jia Song. 2022. "Preparation of Zn5Mo2O11·5H2O@Sulfonated Graphene by Template Method and Its Anticorrosion Mechanism in Polyurethane Coatings" Coatings 12, no. 11: 1634. https://doi.org/10.3390/coatings12111634
APA StyleZhao, Z., Chen, K., Wen, S., Wang, J., Xu, J., Wang, S., Li, W., & Song, J. (2022). Preparation of Zn5Mo2O11·5H2O@Sulfonated Graphene by Template Method and Its Anticorrosion Mechanism in Polyurethane Coatings. Coatings, 12(11), 1634. https://doi.org/10.3390/coatings12111634