Design and Research of Biomaterials
Funding
Acknowledgments
Conflicts of Interest
References
- Patel, N.R.; Gohil, P.P. A Review on Biomaterials: Scope, Application & Human Anatomy Significance. Int. J. Emerg. Technol. Adv. Eng. 2012, 2, 91–101. [Google Scholar]
- Gobbi, S.J.; Gobbi, V.J.; Rocha, Y. Requirements for Selection/Development of a Biomaterial. Biomed. J. Sci. Tech. Res. 2019, 14, 1–6. [Google Scholar] [CrossRef]
- Ratner, B.D.; Hoffman, A.S.; Scheon, F.; Lemons, J. Biomaterials Science: An Introduction to Materials in Medicine, 1st ed.; Elsevier: Amsterdam, The Netherlands, 1997; ISBN 978-0-12-582461-3. [Google Scholar]
- Crubezy, E.; Ludes, B.; Poveda, J.D.; Clayton, J.; Crouau-Roy, B.; Montagnon, D. Identification of myco-bacterium DNA in an Egyptian pott’s disease of 5400 years old. Comptes Rendus de l’Académie des Sciences-Series III-Sciences de la Vie 1998, 321, 941–951. [Google Scholar]
- Parida, P.; Mishra, S.C. UGC sponsored national workshop on innovative experiments in physics. Biomater. Med. 2012, 9–10. [Google Scholar]
- Pramanik, S.; Agarwal, A.K.; Rai, K.N. Chronology of total hip joint replacement and materials develop-ment. Trends Biomater. Artif. Organs 2005, 19, 15–26. [Google Scholar]
- Yadav, S.; Gangwar, S. An Overview on Recent Progresses and Future Perspective of Biomaterials. IOP Conf. Ser. Mater. Sci. Eng. 2018, 404, 012013. [Google Scholar] [CrossRef]
- Bose, S.; Banerjee, D.; Bandyopadhyay, A. Introduction to Biomaterials and Devices for Bone Disorders. In Materials and Devices for Bone Disorders; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–27. ISBN 9780128027929. [Google Scholar]
- Kamitakahara, M.; Ohtsuki, C.; Miyazaki, T. Behaviour of Ceramic Biomaterials Derived from Titanium Phosphate in Physiological Condition. J. Biomater. Appl. 2008, 23, 197–212. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, P.S.; Bhattacharya, C.; Afewerki, S.; Langer, R.S. Smart Biomaterials: Recent Advances and Future Directions. ACS Biomater. Sci. Eng. 2018, 4, 3809–3817. [Google Scholar] [CrossRef]
- Kasiński, A.; Zielińska-Pisklak, M.; Oledzka, E.; Sobczak, M. Smart Hydrogels-Synthetic Stimuli-Responsive Antitumor Drug Release Systems. Int. J. Nanomed. 2020, 2020, 4541–4572. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y. Rational Design of Smart Hydrogels for Biomedical Applications. Front. Chem. 2021, 8, 615665. [Google Scholar] [CrossRef]
- Buwalda, S.J.; Vermonden, T.; Hennink, W.E. Hydrogels for Therapeutic Delivery: Current Developments and Future Directions. Biomacromolecules 2017, 18, 316–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amukarimi, S.; Mozafari, M. 4D bioprinting of tissues and organs. Bioprinting 2021, 23, e00161. [Google Scholar] [CrossRef]
- Nemat-Nasser, S.; Thomas, C. Ionomeric polymer-metal composites. In Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential and Challenges; SPIE: Bellingham, WA, USA, 2001; pp. 171–230. [Google Scholar]
- Li, J.; Xin, M.; Ma, Z.; Shi, Y.; Pan, L. Nanomaterials and their applications on bio-inspired wearable electronics. Nanotechnology 2021, 32, 472002. [Google Scholar] [CrossRef] [PubMed]
- Suh, H. Recent advances in biomaterials. Yonsei Med. J. 1998, 39, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Tathe, A.; Ghodke, M.; Nikalje, A.P. A brief review: Biomaterials and their application. Int. J. Pharm. Pharm. Sci. 2010, 2, 19–23. [Google Scholar]
- Iftekhar, A. Biomedical composites. In Standard Handbook of Biomedical Engineering and Design; McGraw-Hill Companies: New York, NY, USA, 2004; Chapter 12; ISBN 9780071356374. [Google Scholar]
- Kadam, A.G.; Pawar, S.A.; Abhang, S.A. A Review on Finite Element Analysis of Different Biomaterials used in Orthopaedic Implantation. Int. Res. J. Eng. Technol. 2017, 4, 2192–2195. [Google Scholar]
- Plummer, D.R.; Berger, R.A.; Paprosky, W.G.; Sporer, S.M.; Jacobs, J.J.; Valle, C.J.D. Diagnosis and Management of adverse local tissue reactions secondary to corrosion at the head-neck junction in patients with metal on polyethylene bearings. J. Arthroplast. 2016, 31, 264–268. [Google Scholar] [CrossRef]
- Freire, W.P.; Fook, M.V.L.; Barbosa, E.F.; Araujo, C.S.; Barbosa, R.C.; Pinheiro, I.M.F. Biocompatibility of dental restorative materials. Mater. Sci. Forum 2015, 805, 19–25. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Calcium orthophosphate coatings on magnesium and its biodegradable alloys. Acta Biomater. 2014, 10, 2919–2934. [Google Scholar] [CrossRef]
- Asri, R.I.M.; Harun, W.S.W.; Lah, N.A.C.; Ghani, S.A.C.; Tarlochan, F.; Raza, M.R. Corrosion and surface modification on biocompatible metals: A Review. Mater. Sci. Eng. C 2017, 77, 1261–1274. [Google Scholar] [CrossRef] [Green Version]
- Okazaki, Y.; Gotoh, E. Comparison of metal release from various metallic biomaterials in vitro. Biomaterials 2005, 26, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; Liu, H.; Zhu, Y.; Yan, L.; Liu, R.; Wang, G.; Wang, B.; Zhao, B. Animal Models for Treating Spinal Cord Injury Using Biomaterials-Based Tissue Engineering Strategies. Tissue Eng. Part B Rev. 2022, 28, 79–100. [Google Scholar] [CrossRef] [PubMed]
- Burova, I.; Wall, I.; Shipley, R.J. Mathematical and computational models for bone tissue engineering in bioreactor systems. J. Tissue Eng. 2019, 10, 2041731419827922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waters, S.L.; Schumacher, L.J.; El Haj, A.J. Regenerative medicine meets mathematical modelling: Developing symbiotic relationships. npj Regen. Med. 2021, 6, 24. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.T.; Gray, W.G.; Schrefler, B.A. A continuum mechanical framework for modeling tumor growth and treatment in two- and three-phase systems. Arch. Appl. Mech. 2022, 92, 461–489. [Google Scholar] [CrossRef] [PubMed]
- Eivazi, H.; Tahani, M.; Schlatter, P.; Vinuesa, R. Physics-informed neural networks for solving Reynolds-averaged Navier–Stokes equations. Phys. Fluids 2022, 34, 075117. [Google Scholar] [CrossRef]
- Alblawi, A.; Ranjani, A.S.; Yasmin, H.; Gupta, S.; Bit, A.; Rahimi-Gorji, M. Scaffold-free: A developing technique in field of tissue engineering. Comput. Methods Programs Biomed. 2020, 185, 105148. [Google Scholar] [CrossRef]
- Dutta, A.; Chattopadhyay, H.; Yasmin, H.; Gorji, M.R. Entropy generation in the human lung due to effect of psychrometric condition and friction in the respiratory tract. Comput. Methods Programs Biomed. 2019, 180, 105010. [Google Scholar] [CrossRef]
- Yasmin, H. Effect of vaccination on non-integer dynamics of pneumococcal pneumonia infection. Chaos Solitons Fractals 2022, 158, 112049. [Google Scholar] [CrossRef]
- Čolić, K.; Grbović, A.; Sedmak, A.; Legweel, K. Application of Numerical Methods in Design and Analysis of Orthopedic Implant Integrity. In Experimental and Numerical Investigations in Materials Science and Engineering; Mitrovic, N., Milosevic, M., Mladenovic, G., Eds.; CNNTech CNNTech 2018 (2018); Lecture Notes in Networks and Systems; Springer Cham: Cham, Switzerland, 2019; Volume 54, ISBN 978-3-319-99620-2. [Google Scholar]
- Yasmin, H.; Iqbal, N. Convective mass/heat analysis of an electroosmotic peristaltic flow of ionic liquid in a symmetric porous microchannel with Soret and Dufour. Math. Probl. Eng. 2021, 2021, 2638647. [Google Scholar] [CrossRef]
- Hayat, T.; Yasmin, H.; Al-Yami, M. Soret and Dufour effects in peristaltic transport of physiological fluids with chemical reaction: A mathematical analysis. Comput. Fluids 2014, 89, 242–253. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasmin, H. Design and Research of Biomaterials. Coatings 2022, 12, 1684. https://doi.org/10.3390/coatings12111684
Yasmin H. Design and Research of Biomaterials. Coatings. 2022; 12(11):1684. https://doi.org/10.3390/coatings12111684
Chicago/Turabian StyleYasmin, Humaira. 2022. "Design and Research of Biomaterials" Coatings 12, no. 11: 1684. https://doi.org/10.3390/coatings12111684
APA StyleYasmin, H. (2022). Design and Research of Biomaterials. Coatings, 12(11), 1684. https://doi.org/10.3390/coatings12111684