Exciton-Assisted UV Stimulated Emission with Incoherent Feedback in Polydisperse Crystalline ZnO Powder
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- Among considered crystalline ZnO systems, the polydisperse nano-microcrystalline (PNMC) powder with a ZnO particle size ranging from 50 nm to 2 μm showed the random UV SE (λ = 387 nm) with incoherent feedback in all ranges of excitation intensity.
- The dominant factor for UV SE at λ = 387 nm in the PNMC ZnO powder at room temperature is exciton–exciton scattering-assisted radiative transitions.
- The average value of the optical gain at λ = 387 nm in the PNMC ZnO powder RL is estimated to be as high as 150 cm−1.
- ZnO thin film with hexagonal microdisks, as well as low-dispersed ZnO nanopowder, demonstrate UV SE with coherent feedback and ultra-narrow spectral peaks: regular
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, Q.; Xu, Z.; Choi, S.H.; Sun, X.; Xiao, S.; Akkus, O.; Kim, Y.L. Detection of nanoscale structural changes in bone using random lasers. Biomed. Opt. Express 2010, 11, 1401–1407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Armas-Rillo, S.; Fumagallo-Reading, F.; Luis-Ravelo, D.; Abdul-Jalbar, B.; González-Hernández, T.; Lahoz, F. Random lasing detection of mutant huntingtin expression in cells. Sensors. 2021, 21, 3825. [Google Scholar] [CrossRef] [PubMed]
- Wiersma, D.S. The physics and applications of random lasers. Nat. Phys. 2008, 4, 359–367. [Google Scholar] [CrossRef]
- Cao, H. Lasing in random media. Top. Rev. Waves Random Media 2003, 13, R1–R39. [Google Scholar] [CrossRef]
- Cao, H.; Chriki, R.; Bittner, S.; Friesem, A.A.; Davidson, N. Complex lasers with controllable coherence. Nat. Rev. Phys. 2019, 1, 156–168. [Google Scholar] [CrossRef] [Green Version]
- Noginov, M.A. Lasers with Nonresonant Feedback and Laserlike Emission from Powders: Early Ideas and Experiments. In Solid-State Random Lasers; Springer Series in Optical Sciences; Springer: New York, NY, USA, 2005; Chapter 1; pp. 1–9. [Google Scholar] [CrossRef]
- Lu, Y.J.; Shi, Z.F.; Shan, C.X.; Shen, D.Z. ZnO nanostructures and lasers. In Nanoscale Semiconductor Lasers. Micro and Nano Technologies; Tong, C., Jagadish, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Chapter 4; pp. 75–108. [Google Scholar] [CrossRef]
- Bagnall, D.M.; Chen, Y.F.; Zhu, Z.; Yao, T.; Shen, M.Y.; Goto, T. High temperature excitonic stimulated emission from ZnO epitaxial layers. Appl. Phys. Lett. 1998, 73, 1038–1040. [Google Scholar] [CrossRef]
- Thareja, R.K.; Mitra, A. Random laser action in ZnO. Appl. Phys. B Lasers Opt. 2000, 71, 181–184. [Google Scholar] [CrossRef]
- Eliezer, Y.; Qu, G.; Yang, W.; Wang, Y.; Yılmaz, H.; Xiao, S.; Song, Q.; Cao, H. Suppressing meta-holographic artifacts by laser coherence tuning. Light Sci. Appl. 2021, 10, 2047–7538. [Google Scholar] [CrossRef]
- Ye, Y.; Wong, Z.J.; Lu, X.; Ni, X.; Zhu, H.; Chen, X.; Wang, Y.; Zhang, X. Monolayer excitonic laser. Nat. Photonics 2015, 9, 733–737. [Google Scholar] [CrossRef] [Green Version]
- Lytovchenko, V.G.; Fedorenko, L.L.; Korbutyak, D.V.; Strikha, M.V. Ordered electron-hole condensate as a perspective 2D laser environment at room temperatures. Ukr. J. Phys. 2021, 66, 612–617. [Google Scholar] [CrossRef]
- Litovchenko, V.G.; Korbutyak, D.V.; Kryuchenko, Y.V. Investigation of the collective properties of excitons in polar semiconductors (ZnO). Sov. Phys. JETP 1981, 54, 1093–1099. [Google Scholar]
- Korbutyak, D.V.; Litovchenko, V.G. Electron-hole condensate in semiconductors with high exciton energy. Sov. Phys. Solid State 1981, 23, 1411–1416. [Google Scholar]
- Lawandy, N.M.; Balachandran, R.M.; Gomes, A.S.L.; Sauvain, E. Laser action in strongly scattering media. Nature 1994, 368, 436–438. [Google Scholar] [CrossRef]
- Gottardo, S.; Cavalieri, S.; Yaroshchuk, O.; Wiersma, D.S. Quasi-Two-Dimensional Diffusive Random Laser Action. Phys. Rev. Lett. 2004, 93, 263901-1–263901-4. [Google Scholar] [CrossRef] [Green Version]
- Wiersma, D.S.; van Albada, M.P.; Lagendijk, A. Coherent backscattering of light amplifying random media. Phys. Rev. Lett. 1995, 75, 1739–1742. [Google Scholar] [CrossRef] [Green Version]
- Cao, H.; Xu, J.Y.; Zhang, D.Z.; Chang, S.-H.; Ho, S.T.; Seelig, E.W.; Liu, X.; Chang, R.P.H. Spatial confinement of laser light in active random media. Phys. Rev. Lett. 2000, 84, 5584–5587. [Google Scholar] [CrossRef] [Green Version]
- Gomes, A.S.L.; Moura, A.L.; de Araújo, C.B.; Raposo, E.P. Recent advances and applications of random lasers and random fiber lasers. Prog. Quantum Electron. 2021, 78, 100343. [Google Scholar] [CrossRef]
- Han, G.; Okada, M.; Xiao, Z.Y.; Neo, Y.; Aoki, T.; Mimura, H. Cathodoluminescence of single disk-like ZnO prepared by the low-temperature solution-based method. e-J. Surf. Sci. Nanotechnol. 2009, 7, 354–357. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.H.; Yamilov, A.; Noh, H.; Cao, H.; Seelig, E.W.; Chang, R.P.H. Random lasing in closely packed resonant scatterers. J. Opt. Soc. Am. B 2004, 21, 159–167. [Google Scholar] [CrossRef]
- Ohtomo, A.; Kawasaki, M.; Sakurai, Y.; Yoshida, Y.; Koinuma, H.; Yu, P.; Tang, Z.K.; Wong, G.K.L.; Segawa, Y. Room temperature ultraviolet laser emission from ZnO nanocrystal thin films grown by laser MBE. Mater. Sci. Eng. 1998, B54, 24–28. [Google Scholar] [CrossRef]
- Mote, V.; Purushotham, Y.; Dole, B. Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 2012, 6, 2–8. [Google Scholar] [CrossRef] [Green Version]
- Trukhanov, S.V.; Trukhanov, A.V.; Vasil’ev, A.N.; Maignan, A.; Szymczak, H. Critical behavior of Ga0.825Sr0.175MnO2.912 anion-deficient manganite in the magnetic phase transition region. J. Exp. Theor. Phys. Lett. 2007, 85, 507–512. [Google Scholar] [CrossRef]
- Han, G.; Shibukawa, A.; Okada, M.; Neo, Y.; Aoki, T.; Mimura, H. Nanosized hexagonal plateletlike ZnO for nanophosphor applications. J. Vac. Sci. Technol. B 2010, 28, C2C16–C2C19. [Google Scholar] [CrossRef]
- Cao, H.; Zhao, Y.G.; Ho, S.T.; Seelig, E.W.; Wang, Q.H.; Chang, R.P.H. Random laser action in semiconductor powder. Phys. Rev. Lett. 1999, 82, 2278–2281. [Google Scholar] [CrossRef] [Green Version]
- Klingshirn, C. The Luminescence of ZnO under High One- and Two-Quantum Excitation. Phys. Status Solidi 1975, 71, 547–556. [Google Scholar] [CrossRef]
- Kayanuma, Y. Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. Phys. Rev. B 1988, 38, 9797–9805. [Google Scholar] [CrossRef]
- Özgür, Ü.; Alivov, Ya. I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Doğan, S.; Avrutin, V.; Cho, S.-J.; and Morkoç, H. A comprehensive review of ZnO materials and devices. J. Appl. Physics 2005, 98, 041301. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fedorenko, L.; Litovchenko, V.; Naumov, V.; Korbutyak, D.; Yukhymchuk, V.; Gudymenko, O.; Dubikovskyi, O.; Mimura, H.; Medvids, A. Exciton-Assisted UV Stimulated Emission with Incoherent Feedback in Polydisperse Crystalline ZnO Powder. Coatings 2022, 12, 1705. https://doi.org/10.3390/coatings12111705
Fedorenko L, Litovchenko V, Naumov V, Korbutyak D, Yukhymchuk V, Gudymenko O, Dubikovskyi O, Mimura H, Medvids A. Exciton-Assisted UV Stimulated Emission with Incoherent Feedback in Polydisperse Crystalline ZnO Powder. Coatings. 2022; 12(11):1705. https://doi.org/10.3390/coatings12111705
Chicago/Turabian StyleFedorenko, Leonid, Volodymyr Litovchenko, Vadym Naumov, Dmytro Korbutyak, Volodymyr Yukhymchuk, Olexander Gudymenko, Olexander Dubikovskyi, Hidenori Mimura, and Arturs Medvids. 2022. "Exciton-Assisted UV Stimulated Emission with Incoherent Feedback in Polydisperse Crystalline ZnO Powder" Coatings 12, no. 11: 1705. https://doi.org/10.3390/coatings12111705
APA StyleFedorenko, L., Litovchenko, V., Naumov, V., Korbutyak, D., Yukhymchuk, V., Gudymenko, O., Dubikovskyi, O., Mimura, H., & Medvids, A. (2022). Exciton-Assisted UV Stimulated Emission with Incoherent Feedback in Polydisperse Crystalline ZnO Powder. Coatings, 12(11), 1705. https://doi.org/10.3390/coatings12111705