Effect of Nitrogen Flow Rate on Microstructure and Optical Properties of Ta2O5 Coatings
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Parameters | Gas Flow (sccm) | ||||
---|---|---|---|---|---|
40 Ar | 36 Ar-4 N2 | 34 Ar-6 N2 | 32 Ar-8 N2 | ||
Coating thickness (nm) | 685.4 | 437.6 | 433.8 | 337.8 | |
Average roughness (nm) | 1.140 | 0.429 | 0.382 | 0.347 | |
EDS (at%) | O | 75.86 | 78.71 | 72.50 | 75.67 |
Ta | 24.14 | 10.80 | 8.00 | 7.72 | |
N | - | 10.50 | 19.50 | 16.62 | |
Average transmittance (%) | 57.36 | 76.56 | 77.79 | 78.03 | |
Optical band gap (eV) | Edg | 4.10 | 4.12 | 4.23 | 4.19 |
Eig | 4.41 | 4.65 | 4.60 | 4.64 | |
Absorption coefficient (k) l = 600 nm | 4.34 × 10−3 | 2.35 × 10−3 | 2.23 × 10−3 | 2.17 × 10−3 |
References
- Das, U.K.; Tey, K.S.; Seyedmahmoudian, M.; Mekhilef, S.; Idris, M.Y.I.; Van Deventer, W.; Horan, B.; Stojcevski, A. Forecasting of photovoltaic power generation and model optimization: A review. Renew. Sustain. Energy Rev. 2018, 81, 912–928. [Google Scholar] [CrossRef]
- Comello, S.; Reichelstein, S.; Sahoo, A. The road ahead for solar PV power. Renew. Sustain. Energy Rev. 2018, 92, 744–756. [Google Scholar] [CrossRef]
- Yilbas, B.S.; Ali, H.; Khaled, M.M.; Al-Aqeeli, N.; Abu-Dheir, N.; Varanasi, K.K. Influence of dust and mud on the optical, chemical and mechanical properties of a pv protective glass. Sci. Rep. 2015, 5, 15833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Said, S.A.; Al-Aqeeli, N.; Walwil, H.M. The potential of using textured and anti-reflective coated glasses in minimizing dust fouling. Sol. Energy 2015, 113, 295–302. [Google Scholar] [CrossRef]
- Quan, Y.-Y.; Zhang, L.-Z. Experimental investigation of the anti-dust effect of transparent hydrophobic coatings applied for solar cell covering glass. Sol. Energy Mater. Sol. Cells 2017, 160, 382–389. [Google Scholar] [CrossRef]
- Xu, L.; Li, S.; Jiang, J.; Liu, T.; Wu, H.; Wang, J.; Li, X. The influence of dust deposition on the temperature of soiling photovoltaic glass under lighting and windy conditions. Sol. Energy 2020, 199, 491–496. [Google Scholar] [CrossRef]
- Fountoukis, C.; Figgis, B.; Ackermann, L.; Ayoub, M.A. Effects of atmospheric dust deposition on solar PV energy production in a desert environment. Sol. Energy 2018, 164, 94–100. [Google Scholar] [CrossRef]
- Lu, H.; Zhao, W. Effects of particle sizes and tilt angles on dust deposition characteristics of a ground-mounted solar photovoltaic system. Appl. Energy 2018, 220, 514–526. [Google Scholar] [CrossRef]
- Hong, G.; Shen, Z.; He, R.; Liu, G. Material requirements for China’s future lunar exploration missions. Aerosp. Mater. Technol. 2021, 51, 15–25. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=YHCG202105004&DbName=CJFQ2021 (accessed on 10 August 2022).
- Pan, A.; Lu, H.; Zhang, L.-Z. Experimental investigation of dust deposition reduction on solar cell covering glass by different self-cleaning coatings. Energy 2019, 181, 645–653. [Google Scholar] [CrossRef]
- Shang, P.; Xiong, S.; Li, L.; Tian, D.; Ai, W. Investigation on thermal stability of Ta2O5, TiO2 and Al2O3 coatings for application at high temperature. Appl. Surf. Sci. 2013, 285, 713–720. [Google Scholar] [CrossRef]
- Farhan, M.S.; Zalnezhad, E.; Bushroa, A. Properties of Ta2O5 thin films prepared by ion-assisted deposition. Mater. Res. Bull. 2013, 48, 4206–4209. [Google Scholar] [CrossRef]
- Ren, W.; Yang, G.-D.; Feng, A.-L.; Miao, R.-X.; Xia, J.-B.; Wang, Y.-G. Annealing effects on the optical and electrochemical properties of tantalum pentoxide films. J. Adv. Ceram. 2021, 10, 704–713. [Google Scholar] [CrossRef]
- Shakoury, R.; Rezaee, S.; Mwema, F.; Luna, C.; Ghosh, K.; Jurečka, S.; Ţălu, Ş.; Arman, A.; Korpi, A.G. Multifractal and optical bandgap characterization of Ta2O5 thin films deposited by electron gun method. Opt. Quantum Electron. 2020, 52, 95. [Google Scholar] [CrossRef]
- Qiao, Z.; Pu, Y.; Liu, H.; Luo, K.; Wang, G.; Liu, Z.; Ma, P. Residual stress and laser-induced damage of ion-beam sputtered Ta2O5/SiO2 mixture coatings. Thin Solid Films 2015, 592, 221–224. [Google Scholar] [CrossRef]
- Lv, Q.; Huang, M.; Zhang, S.; Deng, S.; Gong, F.; Wang, F.; Pan, Y.; Li, G.; Jin, Y. Effects of Annealing on Residual Stress in Ta2O5 Films Deposited by Dual Ion Beam Sputtering. Coatings 2018, 8, 150. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.-L.; Chang, Y.-Y.; Chen, H.-J.; Chou, Y.-K.; Lai, C.-H.; Chen, M.Y.C. Antibacterial properties and cytocompatibility of tantalum oxide coatings with different silver content. J. Vac. Sci. Technol. A Vac. Surf. Film. 2014, 32, 02B117. [Google Scholar] [CrossRef]
- Horandghadim, N.; Khalil-Allafi, J.; Urgen, M. Influence of tantalum pentoxide secondary phase on surface features and mechanical properties of hydroxyapatite coating on NiTi alloy produced by electrophoretic deposition. Surf. Coatings Technol. 2020, 386, 125458. [Google Scholar] [CrossRef]
- Zaman, A.; Meletis, E.I. Microstructure and Mechanical Properties of TaN Thin Films Prepared by Reactive Magnetron Sputtering. Coatings 2017, 7, 209. [Google Scholar] [CrossRef] [Green Version]
- Riekkinen, T.; Molarius, J.; Laurila, T.; Nurmela, A.; Suni, I.; Kivilahti, J. Reactive sputter deposition and properties of TaxN thin films. Microelectron. Eng. 2002, 64, 289–297. [Google Scholar] [CrossRef]
- Tsukimoto, S.; Moriyama, M.; Murakami, M. Microstructure of amorphous tantalum nitride thin films. Thin Solid Films 2004, 460, 222–226. [Google Scholar] [CrossRef]
- Chen, S.-F.; Wang, S.-J.; Yang, T.-H.; Yang, Z.-D.; Bor, H.-Y.; Wei, C.-N. Effect of nitrogen flow rate on TaN diffusion barrier layer deposited between a Cu layer and a Si-based substrate. Ceram. Int. 2017, 43, 12505–12510. [Google Scholar] [CrossRef]
- Grilli, M.L.; Yilmaz, M.; Aydogan, S.; Cirak, B.B. Room temperature deposition of XRD-amorphous TiO2 thin films: Investigation of device performance as a function of temperature. Ceram. Int. 2018, 44, 11582–11590. [Google Scholar] [CrossRef]
- Li, K.; Xiong, Y.Q.; Wang, H.; He, Y.C.; Wang, L.X.; Zhou, C.; Zhou, H. Effects of Process Parameters on Optical Properties and Crystallization Characteristics of Zinc Sulfide Films. Surf. Technol. 2021, 50, 184–192. [Google Scholar]
- Li, K.P.; Wang, D.S.; Li, C.; Wang, J.; Dong, M.; Zhang, L. Study on optical thin film parameters measurement method. Infrared Laser Eng. 2015, 44, 1048–1052. [Google Scholar]
- Chen, X.; Bai, R.; Huang, M. Optical properties of amorphous Ta2O5 thin films deposited by RF magnetron sputtering. Opt. Mater. 2019, 97, 109404. [Google Scholar] [CrossRef]
- Pai, Y.-H.; Chou, C.-C.; Shieu, F.-S. Preparation and optical properties of Ta2O5−x thin films. Mater. Chem. Phys. 2008, 107, 524–527. [Google Scholar] [CrossRef]
- Minkov, D.; Gavrilov, G.; Angelov, G.; Moreno, J.; Vazquez, C.; Ruano, S.; Marquez, E. Optimisation of the envelope method for characterisation of optical thin film on substrate specimens from their normal incidence transmittance spectrum. Thin Solid Films 2018, 645, 370–378. [Google Scholar] [CrossRef]
- Ghobadi, N.; Arman, A.; Sadeghi, M.; Luna, C.; Mirzaei, S.; Zelati, A.; Shakoury, R. Optical transitions and photocatalytic activity of NiSe films prepared by the chemical solution deposition method. Eur. Phys. J. Plus 2022, 137, 661. [Google Scholar] [CrossRef]
- Wang, L.; Yang, X.; Liu, D.; Jiang, C.; Liu, H.; Ji, Y.; Zhang, F.; Fan, R.; Chen, D. Heat treatment effect on the optical properties of ion beam sputtered tantalum oxide thin films. Infrared Laser Eng. 2018, 47, 184–190. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=HWYJ201803025&DbName=CJFQ2018 (accessed on 10 August 2022).
- Xu, C.; Yang, S.; Wang, J.-F.; Niu, J.; Ma, H.; Qiang, Y.-H.; Liu, J.-T.; Li, D.-W.; Tao, C.-X. Effect of Oxygen Vacancy on the Band Gap and Nanosecond Laser-Induced Damage Threshold of Ta2O5 Films. Chin. Phys. Lett. 2012, 29, 084207. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chao, R.; Cai, H.; Li, H.; Xue, Y. Effect of Nitrogen Flow Rate on Microstructure and Optical Properties of Ta2O5 Coatings. Coatings 2022, 12, 1745. https://doi.org/10.3390/coatings12111745
Chao R, Cai H, Li H, Xue Y. Effect of Nitrogen Flow Rate on Microstructure and Optical Properties of Ta2O5 Coatings. Coatings. 2022; 12(11):1745. https://doi.org/10.3390/coatings12111745
Chicago/Turabian StyleChao, Rui, Haichao Cai, Hang Li, and Yujun Xue. 2022. "Effect of Nitrogen Flow Rate on Microstructure and Optical Properties of Ta2O5 Coatings" Coatings 12, no. 11: 1745. https://doi.org/10.3390/coatings12111745
APA StyleChao, R., Cai, H., Li, H., & Xue, Y. (2022). Effect of Nitrogen Flow Rate on Microstructure and Optical Properties of Ta2O5 Coatings. Coatings, 12(11), 1745. https://doi.org/10.3390/coatings12111745