Effect of Pipe Materials on Bacterial Community, Redox Reaction, and Functional Genes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Static Soaking Experiment
2.2. Dynamic Distribution System Setup and Operation
2.3. Pyrosequencing of Bacterial 16S rRNA Genes
2.4. Data Analysis and Statistics
3. Results
3.1. The Difference in Water Quality Due to Leaching Matters from Pipe Materials
3.2. The Difference in Water Quality Due to the Activity of Microorganisms
3.3. Phylogenetic Assessment of Microbial Community
3.4. Presence of Redox Bacteria and Chlorine-Resistant Bacteria
3.5. Effect of Pipe Materials on COG Functional Categories
4. Discussion
4.1. Bacteria’s Common Requirement of Habitat from Different Pipe Materials
4.2. Nutrients in the Effluent as a Result of Biofilm Detachment
4.3. Corrosion Bacteria in Different Pipe Materials
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature and Acronyms
References
- Concha, C.; Doerner, P. The impact of the rhizobia-legume symbiosis on host root system architecture. J. Exp. Bot. 2020, 71, 3902–3921. [Google Scholar] [CrossRef]
- Li, M.J.; Liu, Z.W.; Chen, Y.C.; Hai, Y. Characteristics of iron corrosion scales and water quality variations in drinking water distribution systems of different pipe materials. Water Res. 2016, 106, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Perrin, Y.; Bouchon, D.; Delafont, V.; Moulin, L.; Hechard, Y. Microbiome of drinking water: A full-scale spatio-temporal study to monitor water quality in the Paris distribution system. Water Res. 2019, 149, 375–385. [Google Scholar] [CrossRef]
- Zhang, S.; Tian, Y.; Guo, Y.; Shan, J.; Liu, R. Manganese release from corrosion products of cast iron pipes in drinking water distribution systems: Effect of water temperature, pH, alkalinity, SO42− concentration and disinfectants. Chemosphere 2021, 262, 127904. [Google Scholar] [CrossRef] [PubMed]
- Rand, J.L.; Sharafimasooleh, M.; Walsh, M.E. Effect of water hardness and pipe material on enhanced disinfection with UV light and chlorine. J. Water Supply Res. Technol. Aqua 2013, 62, 426–432. [Google Scholar] [CrossRef]
- Zhang, H.; Tian, Y.; Kang, M.; Chen, C.; Song, Y.; Li, H. Effects of chlorination/chlorine dioxide disinfection on biofilm bacterial community and corrosion process in a reclaimed water distribution system. Chemosphere 2019, 215, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Abokifa, A.A.; Yang, Y.J.; Lo, C.S.; Biswas, P. Investigating the role of biofilms in trihalomethane formation in water distribution systems with a multicomponent model. Water Res. 2016, 104, 208–219. [Google Scholar] [CrossRef]
- Ding, S.; Deng, Y.; Bond, T.; Fang, C.; Cao, Z.; Chu, W. Disinfection byproduct formation during drinking water treatment and distribution: A review of unintended effects of engineering agents and materials. Water Res. 2019, 160, 313–329. [Google Scholar] [CrossRef]
- Zhang, H.; Andrews, S.A. Effects of pipe materials, orthophosphate, and flow conditions on chloramine decay and NDMA formation in modified pipe loops. J. Water Supply Res. Technol. Aqua 2013, 62, 107–119. [Google Scholar] [CrossRef]
- Gamri, S.; Soric, A.; Tomas, S.; Molle, B.; Roche, N. Effects of pipe materials on biofouling under controlled hydrodynamic conditions. J. Water Reuse Desalination 2016, 6, 167–174. [Google Scholar] [CrossRef]
- Learbuch, K.L.G.; Smidt, H.; van der Wielen, P. Water and biofilm in drinking water distribution systems in the Netherlands. Sci. Total Environ. 2022, 831, 154940. [Google Scholar] [CrossRef] [PubMed]
- Spark, A.; Wang, K.; Cole, I.; Law, D.; Ward, L. Microbiologically influenced corrosion: A review of the studies conducted on buried pipelines. Corros. Rev. 2020, 38, 231–262. [Google Scholar] [CrossRef]
- Rozej, A.; Cydzik-Kwiatkowska, A.; Kowalska, B.; Kowalski, D. Structure and microbial diversity of biofilms on different pipe materials of a model drinking water distribution systems. World J. Microbiol. Biotechnol. 2015, 31, 37–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Hu, C.; Shi, B. The control of red water occurrence and opportunistic pathogens risks in drinking water distribution systems: A review. J. Environ. Sci. 2021, 110, 92–98. [Google Scholar] [CrossRef]
- Fu, Y.; Peng, H.; Liu, J.; Nguyen, T.H.; Hashmi, M.Z.; Shen, C. Occurrence and quantification of culturable and viable but non-culturable (VBNC) pathogens in biofilm on different pipes from a metropolitan drinking water distribution system. Sci. Total Environ. 2021, 764, 142851. [Google Scholar] [CrossRef]
- Leslie, E.; Hinds, J.; Hai, F.I. Causes, Factors, and Control Measures of Opportunistic Premise Plumbing Pathogens—A Critical Review. Appl. Sci. 2021, 11, 4474. [Google Scholar] [CrossRef]
- Zhu, Z.B.; Wu, C.G.; Zhong, D.; Yuan, Y.X.; Shan, L.L.; Zhang, J. Effects of Pipe Materials on Chlorine-resistant Biofilm Formation under Long-term High Chlorine Level. Appl. Biochem. Biotechnol. 2014, 173, 1564–1578. [Google Scholar] [CrossRef]
- Niquette, P.; Servais, P.; Savoir, R. Impacts of pipe materials on densities of fixed bacterial biomass in a drinking water distribution system. Water Res. 2000, 34, 1952–1956. [Google Scholar] [CrossRef]
- Douterelo, I.; Boxall, J.B.; Deines, P.; Sekar, R.; Fish, K.E.; Biggs, C.A. Methodological approaches for studying the microbial ecology of drinking water distribution systems. Water Res. 2014, 65, 134–156. [Google Scholar] [CrossRef] [Green Version]
- Langille, M.G.; Zaneveld, J.; Caporaso, J.G.; McDonald, D.; Knights, D.; Reyes, J.A.; Clemente, C.J.; Burkepile, D.E.; Vega Thurber, R.L.; Knight, R.; et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 2013, 31, 814–821. [Google Scholar] [CrossRef]
- Blanco-Picazo, P.; Gomez-Gomez, C.; Tormo, M.; Ramos-Barbero, M.D.; Rodriguez-Rubio, L.; Muniesa, M. Prevalence of bacterial genes in the phage fraction of food viromes. Food Res. Int. 2022, 156, 111342. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Li, T.; Zhu, L.; Wang, Q.; Liang, X.; Li, Y.; Wang, X.; Zhao, S.; Li, L.; Li, Y. Obese Individuals with and without Phlegm-Dampness Constitution Show Different Gut Microbial Composition Associated with Risk of Metabolic Disorders. Front. Cell. Infect. Microbiol. 2022, 12, 859708. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Wu, X.; Zhang, T.; Cen, C.; Mao, R.; Pan, R. Pilot investigation on biostability of drinking water distribution systems under water source switching. Appl. Microbiol. Biotechnol. 2022, 106, 5273–5286. [Google Scholar] [CrossRef] [PubMed]
- Gomes, I.B.; Simoes, M.; Simoes, L.C. An overview on the reactors to study drinking water biofilms. Water Res. 2014, 62, 63–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, W.; Ledingham, G.J.; Catalano, J.G.; Giammar, D.E. Effects of Cu(II) and Zn(II) on PbO2 Reductive Dissolution under Drinking Water Conditions: Short-term Inhibition and Long-term Enhancement. Environ. Sci. Technol. 2021, 55, 14397–14406. [Google Scholar] [CrossRef]
- Tian, Y.; Li, J.; Jia, S.; Zhao, W. Co-release potential and human health risk of heavy metals from galvanized steel pipe scales under stagnation conditions of drinking water. Chemosphere 2021, 267, 129270. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, L.; Liu, D.; Wang, J.; Zhang, X.; Chen, C. Early period corrosion and scaling characteristics of ductile iron pipe for ground water supply with sodium hypochlorite disinfection. Water Res. 2020, 176, 115742. [Google Scholar] [CrossRef]
- Jang, H.J.; Choi, Y.J.; Ka, J.O. Effects of diverse water pipe materials on bacterial communities and water quality in the annular reactor. J. Microbiol. Biotechnol. 2011, 21, 115. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Peng, H.; Tan, S.; Wu, J.; Bastani, H.; Li, C. Influence factors of organic compounds leaching from PE pipes and the potential toxic effects on E. coli and rat C6 glioma cell. Water Sci. Technol.-Water Supply 2016, 16, 402–409. [Google Scholar] [CrossRef]
- Lequette, K.; Ait-Mouheb, N.; Wery, N. Drip irrigation biofouling with treated wastewater: Bacterial selection revealed by high-throughput sequencing. Biofouling 2019, 35, 217–229. [Google Scholar] [CrossRef]
- Lehtola, M.J.; Laxander, M.; Miettinen, I.T.; Hirvonen, A.; Vartiainen, T.; Martikainen, P.J. The effects of changing water flow velocity on the formation of biofilms and water quality in pilot distribution system consisting of copper or polyethylene pipes. Water Res. 2006, 40, 2151–2160. [Google Scholar] [CrossRef] [PubMed]
- Douterelo, I.; Sharpe, R.L.; Husband, S.; Fish, K.E.; Boxall, J.B. Understanding microbial ecology to improve management of drinking water distribution systems. WIREs Water 2018, 6, e01325. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.; Wang, W.; Liu, Y.; Liu, S.; Lou, L.; Cheng, D.; He, X.; Zhou, X.; Qiu, S.; Fu, L.; et al. Pyrosequencing analysis of bacterial communities in biofilms from different pipe materials in a city drinking water distribution system of East China. Appl. Microbiol. Biotechnol. 2015, 99, 10713–10724. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Tian, Y.M.; Liu, H.N.; Zhang, B.; Wu, Q.; Guo, H.N. Research on Microbial Diversity of Pipeline Biofilms in Water Distribution System. J. Pure Appl. Microbiol. 2013, 7, 425–433. [Google Scholar]
- Makris, K.C.; Andra, S.S.; Botsaris, G. Pipe Scales and Biofilms in Drinking-Water Distribution Systems: Undermining Finished Water Quality. Crit. Rev. Environ. Sci. Technol. 2014, 44, 1477–1523. [Google Scholar] [CrossRef]
- Siedlecka, A.; Wolf-Baca, M.; Piekarska, K. Microbial communities of biofilms developed in a chlorinated drinking water distribution system: A field study of antibiotic resistance and biodiversity. Sci. Total Environ. 2021, 774, 145113. [Google Scholar] [CrossRef]
- Takeuchi, M.; Hamana, K.; Hiraishi, A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int. J. Syst. Evol. Microbiol. 2001, 51, 1405–1417. [Google Scholar] [CrossRef]
- Jordan, D. Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int. J. Syst. Evol. Microbiol. 1982, 32, 136–139. [Google Scholar] [CrossRef]
- Achenbach, L.A.; Michaelidou, U.; Bruce, R.A.; Fryman, J.; Coates, J.D. Dechloromonas agitata gen. nov., sp. nov. and Dechlorosoma suillum gen. nov., sp. nov., two novel environmentally dominant (per)chlorate-reducing bacteria and their phylogenetic position. Int. J. Syst. Evol. Microbiol. 2001, 51, 527–533. [Google Scholar] [CrossRef]
- Bruland, N.; Bathe, S.; Willems, A.; Steinbüchel, A. Pseudorhodoferax soli gen. nov., sp. nov. and Pseudorhodoferax caeni sp. nov., two members of the class Betaproteobacteria belonging to the family Comamonadaceae. Int. J. Syst. Evol. Microbiol. 2009, 59, 2702–2707. [Google Scholar] [CrossRef] [Green Version]
- Koch, I.H.; Gich, F.; Dunfield, P.F.; Overmann, J. Edaphobacter modestus gen. nov., sp. nov., and Edaphobacter aggregans sp. nov., acidobacteria isolated from alpine and forest soils. Int. J. Syst. Evol. Microbiol. 2008, 58, 1114–1122. [Google Scholar] [CrossRef] [PubMed]
- Tóth, E.M.; Vengring, A.; Homonnay, Z.G.; Keki, Z.; Spröer, C.; Borsodi, A.K.; Márialigeti, K.; Schumann, P. Phreatobacter oligotrophus gen. nov., sp. nov., an alphaproteobacterium isolated from ultrapure water of the water purification system of a power plant. Int. J. Syst. Evol. Microbiol. 2014, 64 Pt 3, 839. [Google Scholar] [CrossRef] [PubMed]
- Grabovich, M.; Gavrish, E.; Kuever, J.; Lysenko, A.M.; Podkopaeva, D.; Dubinina, G. Proposal of Giesbergeria voronezhensis gen. nov., sp. nov. and G. kuznetsovii sp. nov. and reclassification of [Aquaspirillum] anulus, [A.] sinuosum and [A.] giesbergeri as Giesbergeria anulus comb. nov., G. sinuosa comb. nov. and G. giesbergeri comb. nov., and [Aquaspirillum] metamorphum and [A.] psychrophilum as Simplicispira metamorpha gen. nov., comb. nov. and S. psychrophila comb. nov. Int. J. Syst. Evol. Microbiol. 2006, 56, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Segers, P.; Vancanneyt, M.; Pot, B.; Torck, U.; Hoste, B.; Dewettinck, D.; Falsen, E.; Kersters, K.; De Vos, P. Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Büsing, Döll, and Freytag 1953 in Brevundimonas gen. nov. as Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb. nov., Respectively. Int. J. Syst. Bacteriol. 1994, 44, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Shida, O.; Takagi, H.; Kadowaki, K.; Komagata, K. Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int. J. Syst. Bacteriol. 1996, 46, 939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anupama, V.N.; Prajeesh, P.V.; Anju, S.; Priya, P.; Krishnakumar, B. Diversity of bacteria, archaea and protozoa in a perchlorate treating bioreactor. Microbiol. Res. 2015, 177, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Kose Mutlu, B.; Ozgun, H.; Ersahin, M.E.; Kaya, R.; Eliduzgun, S.; Altinbas, M.; Kinaci, C.; Koyuncu, I. Impact of salinity on the population dynamics of microorganisms in a membrane bioreactor treating produced water. Sci. Total Environ. 2019, 646, 1080–1089. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wang, H.; Li, X.; Hu, C.; Yang, M.; Qu, J. Characterization of biofilm and corrosion of cast iron pipes in drinking water distribution system with UV/Cl2 disinfection. Water Res. 2014, 60, 174–181. [Google Scholar] [CrossRef]
- Sun, H.; Shi, B.; Lytte, D.A.; Bai, Y.; Wang, D. Formation and release behavior of iron corrosion products under the influence of bacterial communities in a simulated water distribution system. Environ. Sci. Process. Impacts 2014, 16, 576–585. [Google Scholar] [CrossRef]
- Wang, H.; Hu, C.; Zhang, L.; Li, X.; Zhang, Y.; Yang, M. Effects of microbial redox cycling of iron on cast iron pipe corrosion in drinking water distribution systems. Water Res. 2014, 65, 362–370. [Google Scholar] [CrossRef]
- Berry, D.; Xi, C.W.; Raskin, L. Microbial ecology of drinking water distribution systems. Curr. Opin. Biotechnol. 2006, 17, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.P.; Feng, H.Z.; Wang, Q.; Quan, S.W.; Yu, X.Q.; Tao, X.; Wang, Y.; Guo, D.D.; Peng, L.; Feng, H.Y.; et al. Proteomic analysis reveals the mechanism of different environmental stress-induced tolerance of Pseudomonas aeruginosa to monochloramine disinfection. J. Hazard. Mater. 2021, 417, 126082. [Google Scholar] [CrossRef] [PubMed]
- Chao, Y.; Mao, Y.; Wang, Z.; Zhang, T. Diversity and functions of bacterial community in drinking water biofilms revealed by high-throughput sequencing. Sci. Rep. 2015, 5, 10044. [Google Scholar] [CrossRef] [Green Version]
- Hinenoya, A.; Awasthi, S.P.; Yasuda, N.; Shima, A.; Morino, H.; Koizumi, T.; Fukuda, T.; Shibata, T.; Yamasaki, S. Chlorine dioxide is a superior disinfectant against multi-drug resistant Staphylococcus aureus, Pseudomonas aeruginosa and Acinetobacter baumannii. Jpn. Med. J. 2015, 68, 276–279. [Google Scholar]
- Nam, H.; Seo, H.S.; Bang, J.; Kim, H.; Beuchat, L.R.; Ryu, J.H. Efficacy of gaseous chlorine dioxide in inactivating Bacillus cereus spores attached to and in a biofilm on stainless steel. Int. J. Food Microbiol. 2014, 188, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Mustapha, P.; Epalle, T.; Allegra, S.; Girardot, F.; Garraud, O.; Riffard, S. Monitoring of Legionella pneumophila viability after chlorine dioxide treatment using flow cytometry. Res. Microbiol. 2015, 166, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Furuhata, K.; Koike, K.A. Isolation of Methylobacterium spp. from drinking tank-water and resistance of isolates to chlorine. Nihon Kōshū Eisei Zasshi Jpn. J. Public Health 1993, 40, 1047–1053. [Google Scholar]
- Wang, H.; Edwards, M.; Falkinham, J.O.; Pruden, A. Molecular Survey of the Occurrence of Legionella spp., Mycobacterium spp., Pseudomonas aeruginosa, and Amoeba Hosts in Two Chloraminated Drinking Water Distribution Systems. Appl. Environ. Microbiol. 2012, 78, 6285–6294. [Google Scholar] [CrossRef] [Green Version]
- Taylor, R.H.; Falkinham, J.O.; Norton, C.D.; LeChevallier, M.W. Chlorine, chloramine, chlorine dioxide, and ozone susceptibility of Mycobacterium avium. Appl. Environ. Microbiol. 2000, 66, 1702–1705. [Google Scholar] [CrossRef] [Green Version]
- Shrivastava, R.; Upreti, R.K.; Jain, S.R.; Prasad, K.N.; Seth, P.K.; Chaturvedi, U.C. Suboptimal chlorine treatment of drinking water leads to selection of multidrug-resistant Pseudomonas aeruginosa. Ecotoxicol. Environ. Saf. 2004, 58, 277–283. [Google Scholar] [CrossRef]
- Sun, W.; Liu, W.; Cui, L.; Zhang, M.; Wang, B. Characterization and identification of a chlorine-resistant bacterium, Sphingomonas TS001, from a model drinking water distribution system. Sci. Total Environ. 2013, 458–460, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Al-Ajeel, S.; Spasov, E.; Sauder, L.A.; McKnight, M.M.; Neufeld, J.D. Ammonia-oxidizing archaea and complete ammonia-oxidizing Nitrospira in water treatment systems. Water Res. X 2022, 15, 100131. [Google Scholar] [CrossRef] [PubMed]
- Nawrocki, J.; Raczyk-Stanislawiak, U.; Swietlik, J.; Olejnik, A.; Sroka, M.J. Corrosion in a distribution system: Steady water and its composition. Water Res. 2010, 44, 1863–1872. [Google Scholar] [CrossRef] [PubMed]
- Rubino, F.; Corona, Y.; Perez, J.G.J.; Smith, C. Bacterial Contamination of Drinking Water in Guadalajara, Mexico. Int. J. Environ. Res. Public Health 2018, 16, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lou, Y.; Chang, W.; Cui, T.; Wang, J.; Qian, H.; Ma, L.; Hao, X.; Zhang, D. Microbiologically influenced corrosion inhibition mechanisms in corrosion protection: A review. Bioelectrochemistry 2021, 141, 107883. [Google Scholar] [CrossRef] [PubMed]
- Huo, L.; Pan, L.; Chen, R.; Shi, B.; Wang, H.; He, S. Effects of disinfectants and particles on the occurrence of different microorganisms in drinking water distribution systems. Environ. Sci. Water Res. Technol. 2021, 7, 983–992. [Google Scholar] [CrossRef]
- Wang, H.; Hu, C.; Yin, L.; Zhang, S.; Liu, L. Characterization of chemical composition and bacterial community of corrosion scales in different drinking water distribution systems. Environ. Sci. Water Res. Technol. 2017, 3, 147–155. [Google Scholar] [CrossRef]
- Chen, S.; Deng, H.; Liu, G.; Zhang, D. Corrosion of Q235 Carbon Steel in Seawater Containing Mariprofundus ferrooxydans and Thalassospira sp. Front. Microbiol. 2019, 10, 936. [Google Scholar] [CrossRef]
Water Sources | Turbidity (NTU) | Chlorine Residual (mg/L) | Total Plate Count Bacteria (CFU/mL) |
---|---|---|---|
Laboratory | 0.12 | 2 | 0 |
Distribution system node | 0.53 | 0.08 | 3100 |
Sources of Immersing Water | Laboratory | Distribution System Node |
---|---|---|
Turbidity | 0.001 | 0.021 |
TPC | 0.578 | 0.116 |
DOC | 0.182 | 0.006 |
BDOC | 0.004 | 0.024 |
Sample | Shannon | Simpson | Ace | Chao |
---|---|---|---|---|
SP | 3.14 | 0.10 | 226.17 | 225.30 |
CI | 0.77 | 0.66 | 119.17 | 118.75 |
DI | 3.56 | 0.05 | 207.34 | 205.24 |
- | Genus | Phylum and Class | DNA (mol% GC) | Habitats/First Derived From | Characteristics | References |
---|---|---|---|---|---|---|
SP | Novosphingobium | Proteobacteria, α-proteobacteria | 62–67 | soil, stocked distilled water, coastal plain sediments, uidizedbed reactor | non-sporulating rods, Gram-negative, strictly aerobic, chemo-organotrophic | [37] |
- | Sphingobium | Proteobacteria, α-proteobacteria | 62–67 | soil, pentachlorophenol-contaminated soil, and clinical specimens | non-sporulating rods, Gram-negative, strictly aerobic, chemo-organotrophic | [37] |
- | Bradyrhizobium | Proteobacteria, α-proteobacteria | 62–66 | slow-growing, Root Nodule Bacteria | short rods, Gram-negative, aerobic, chemo-organotrophic, optimal temperature: 25–30 °C | [38] |
DI | Dechloromonas | Proteobacteria, β-proteobacteria | NA | a pulp and paper plant waste pulp sludge | rod-shaped, Gram-negative, facultative anaerobe; the predominant chlorate-reducing bacteria | [39] |
- | Pseudorhodoferax | Proteobacteria, β-proteobacteria | 69–70 | activated sludge; soil | short rods, Gram-negative, aerobic, chemo-organotrophic, optimal temperature: 30 °C | [40] |
- | Edaphobacter | Acidobacteria, Acidobacteria | 55.8–56.9 | soils, low carbon concentrations, and neutral to slightly acidic conditions | non-spore-forming, short, ovoid rods, Gram-negative, aerobic, chemo-organotrophic, optimal temperature: 30 °C | [41] |
- | Phreatobacter | Proteobacteria, α-proteobacteria | NA | ultrapure water | motile rods, Gram-negative, strictly aerobic | [42] |
- | Simplicispira | Proteobacteria, β-proteobacteria | 63–65 | freshwater, wastewater, Antarctic mosses | Spirilla, Gram-negative, aerobes and facultative anaerobes, mesophilic | [43] |
CI | Brevundimonas | Proteobacteria, α-proteobacteria | 65–68 | NA | short rods, Gram-negative, aerobic, chemo-organotrophic, optimal temperature: 30–37 °C | [44] |
- | Brevibacillus | Firmicutes, Bacilli | 42.8–57.4 | NA | rods, Gram-positive or variable, aerobic, optimal temperature: 30 °C | [45] |
Chlorine-Resistant Bacteria Genus | SP | DI | CI |
---|---|---|---|
Acinetobacter [54] | 3 | 8 | 28 |
Bacillus [55] | 14 | 22 | 66 |
Francisella [54] | 0 | 0 | 0 |
Legionella [56] | 129 | 11 | 0 |
Methylobacterium [57] | 0 | 0 | 0 |
Moraxella [17] | 0 | 0 | 0 |
Mycobacterium [58,59] | 5 | 54 | 0 |
Pseudomonas [54,60] | 40 | 93 | 122 |
Sphingomonas [61] | 0 | 0 | 0 |
Staphylococcus [54] | 2 | 4 | 15 |
The proportion of the chlorine-resistant bacteria | 0.57 | 0.49 | 0.55 |
Description | COG Functional Categories Percentage (%) | ||
---|---|---|---|
DI | CI | SP | |
RNA processing and modification | 0.03 | 0.00 | 0.04 |
Chromatin structure and dynamics | 0.03 | 0.00 | 0.04 |
Energy production and conversion | 6.87 | 6.17 | 6.99 |
Cell cycle control, cell division, chromosome partitioning | 0.98 | 1.01 | 1.04 |
Amino acid transport and metabolism | 8.31 | 7.23 | 7.84 |
Nucleotide transport and metabolism | 2.27 | 2.49 | 2.17 |
Carbohydrate transport and metabolism | 5.50 | 4.17 | 5.29 |
Coenzyme transport and metabolism | 3.71 | 3.41 | 3.85 |
Lipid transport and metabolism | 4.87 | 5.35 | 5.02 |
Translation, ribosomal structure, and biogenesis | 5.22 | 5.98 | 5.36 |
Transcription | 6.63 | 6.21 | 6.15 |
Replication, recombination, and repair | 5.23 | 5.07 | 5.60 |
Cell wall/membrane/envelope biogenesis | 6.98 | 6.83 | 7.25 |
Cell motility | 1.83 | 2.09 | 1.72 |
Posttranslational modification, protein turnover, chaperones | 4.32 | 5.10 | 4.60 |
Inorganic ion transport and metabolism | 6.00 | 6.30 | 6.41 |
Secondary metabolites biosynthesis, transport, and catabolism | 2.54 | 2.25 | 2.78 |
General function prediction only | 8.17 | 8.29 | 7.97 |
Function unknown | 10.66 | 11.72 | 9.48 |
Signal transduction mechanisms | 6.02 | 6.31 | 6.07 |
Intracellular trafficking, secretion, and vesicular transport | 2.34 | 2.49 | 2.75 |
Defense mechanisms | 1.48 | 1.52 | 1.58 |
Extracellular structures | 0.00 | 0.00 | 0.00 |
Nuclear structure | 0.00 | 0.00 | 0.00 |
Cytoskeleton | 0.00 | 0.00 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, S.; Zhou, Y.; Yu, H.; Li, W.; Zhou, W.; Luo, G.; Zhang, W. Effect of Pipe Materials on Bacterial Community, Redox Reaction, and Functional Genes. Coatings 2022, 12, 1747. https://doi.org/10.3390/coatings12111747
Sun S, Zhou Y, Yu H, Li W, Zhou W, Luo G, Zhang W. Effect of Pipe Materials on Bacterial Community, Redox Reaction, and Functional Genes. Coatings. 2022; 12(11):1747. https://doi.org/10.3390/coatings12111747
Chicago/Turabian StyleSun, Shengxin, Yu Zhou, Haitao Yu, Weiying Li, Wenying Zhou, Guanyuan Luo, and Wei Zhang. 2022. "Effect of Pipe Materials on Bacterial Community, Redox Reaction, and Functional Genes" Coatings 12, no. 11: 1747. https://doi.org/10.3390/coatings12111747
APA StyleSun, S., Zhou, Y., Yu, H., Li, W., Zhou, W., Luo, G., & Zhang, W. (2022). Effect of Pipe Materials on Bacterial Community, Redox Reaction, and Functional Genes. Coatings, 12(11), 1747. https://doi.org/10.3390/coatings12111747