In-Depth Rheological Characterization of Tungsten Sol-Gel Inks for Inkjet Printing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the WO3 Sol
2.2. Thermogravimmetric Analysis of the WO3 Xerogles
2.3. XRD Analysis of the WO3 Xerogles and Powders
2.4. Rheological Characterization
2.5. IR Spectroscopic Measurements
3. Results and Discussion
3.1. Structural Analysis of the Sols and Gels
3.2. Viscosity of WO3 Sols
3.3. In Situ Rheological Characterization of WO3 Gelation Process
3.4. Ex-Situ Rheological Characterization of WO3 Gelation Process
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Naito, M.; Yokoyama, T.; Hosokawa, K.; Nogi, K. Nanoparticle Technology Handbook, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Deb, S.K. Opportunities and challenges in science and technology of WO3 for electrochromic and related applications. Sol. Energ. Mat. Sol. Cells 2008, 92, 245–258. [Google Scholar] [CrossRef]
- Monk, P.; Mortimer, R.; Rosseinsky, D. Electrochromism and Electrochromic Devices; Cambridge: New York, NY, USA, 2007; pp. 139–151. [Google Scholar]
- Zhang, M.; Yang, C.; Zhang, Z.; Tian, W.; Hui, B.; Zhang, J.; Zhang, K. Tungsten oxide polymorphs and their multifunctional applications. Adv. Colloid Interface Sci. 2022, 300, 102596. [Google Scholar] [CrossRef] [PubMed]
- Cezarina, C.M.; Hassel, A.W. Review on the versatility of tungsten oxide coatings. Phys. Status Solidi A 2019, 216, 1–16. [Google Scholar]
- Klanjšek Gunde, M.; Opara Krašovec, U.; Platzer, W. Color rendering properties of interior lighting influenced by a switchable window. J. Opt. Soc. Am. A 2005, 22, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Opara Krašovec, U.; Šurca Vuk, A.; Orel, B. Comparative studies of all sol–gel electrochromic windows employing various counter-electrodes. Sol. Energy Mater. Sol. Cells 2002, 73, 21–37. [Google Scholar] [CrossRef]
- Cremonesi, A.; Bersani, D.; Lottici, P.P.; Djaoued, Y.; Ashrit, P.V. WO3 thin films by sol–gel for electrochromic applications. J. Non-Cryst. Solids 2004, 45&346, 500–504. [Google Scholar] [CrossRef]
- Hauch, A.G.; Opara Krašovec, U.; Orel, B. Comparison of photoelectrochromic devices with different layer configurations. J. Electrochem. Soc. 2002, 149, H159–H163. [Google Scholar] [CrossRef]
- Opara Krašovec, U.; Georg, A.; Georg, A.; Wittwer, V.; Luther, J.; Topič, M. Performance of a solid-state photoelectrochromic device. Sol. Energy Mater. Sol. Cells 2004, 84, 369–380. [Google Scholar] [CrossRef]
- Hočevar, M.; Opara Krašovec, U. A photochromic single glass pane. Sol. Energy Mater. Sol. Cells 2018, 186, 111–114. [Google Scholar] [CrossRef]
- Hočevar, M.; Opara Krašovec, U. Cubic WO3 stabilized by inclusion of Ti: Applicable in photochromic glazing. Sol. Energy Mater. Sol. Cells 2016, 154, 57–641. [Google Scholar] [CrossRef]
- Dao, T.T.; Park, S.; Hong, S.; Sarwar, S.; Van Tran, H.; Lee, S.I.; Park, H.S.; Song, S.H.; Nguyen, H.D.; Lee, K.-K.; et al. Novel flexible photochromic device with unprecedented fast-bleaching kinetic via platinum decoration on WO3 layer. Sol. Energy Mater. Sol. Cells 2021, 231, 111316. [Google Scholar] [CrossRef]
- Opara Krašovec, U.; Orel, B.; Georg, A.; Wittwer, V. The gasochromic properties of sol-gel WO3 films with sputtered Pt catalyst. Sol. Energy 2000, 68, 541–551. [Google Scholar] [CrossRef]
- Vidmar, T.; Topič, M.; Dzik, P.; Opara Krašovec, U. Inkjet printing of sol-gel derived tungsten oxide inks. Sol. Energ. Mater. Sol. Cells 2014, 125, 87–95. [Google Scholar] [CrossRef]
- Brinker, J.C.; Scherer, G.W. Sol-Gel Science: The Physics and Chemistry of Sol–Gel Processing; Academic Press: Cambridge, MA, USA, 1999. [Google Scholar] [CrossRef]
- Cui, Z. Printed Eletronics: Materials, Technologies and Applications; John Wiley and Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Zapka, W. Handook of Industrial Inkjet Printing: A Full System Approach; John Willey and Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Yang, P.; Jin Fan, H. Inkjet and extrusion printing for electrochemical energy storage: A mini review. Adv. Mater. Technol. 2020, 5, 2000217. [Google Scholar] [CrossRef]
- Dimatix. Materials Printer DMP-2800 Series: User Manual; Doc. # PM000040 Rev. 05; FUJIFILM Dimatix, Inc.: Tokyo, Japan, 2010. [Google Scholar]
- Atkinson, A.; Doorbar, J.; Hudd, A.; Segal, D.L.; White, P.J. Continuous ink-jet printing using sol-gel “Ceramic” inks. JSST 1 1997, 8, 1093–1097. [Google Scholar] [CrossRef]
- Liu, X.; Tarn, T.J.; Huang, F.; Fan, J. Recent advances in inkjet printing synthesis of functional metal oxides. Particuology 2015, 19, 1–13. [Google Scholar] [CrossRef]
- Žitňan, M.; Müller, L.; Zub, K.; Schubert, U.S.; Galusek, D.; Wondraczek, L. Low-cost inkjet printing of thin-film mullite structures. Int. J. Appl. Glass Sci. 2022, 13, 135–142. [Google Scholar] [CrossRef]
- Homola, T.; Ďurašová, Z.; Shekargoftar, M.; Souček, P.; Dzik, P. Optimization of TiO2 mesoporous photoanodes prepared by inkjet printing and low-temperature plasma processing. Plasma Chem. Plasma Process. 2020, 40, 1311–1330. [Google Scholar] [CrossRef]
- Kassem, O.; Saadaoui, M.; Rieu, M.; Sao-Joao, S.; Viricelle, J.-P. Synthesis and inkjet printing of sol–gel derived tin oxide ink for flexible gas sensing application. J. Mater. Sci. 2018, 53, 12750–12761. [Google Scholar] [CrossRef]
- Karimi-Nazarabad, M.; Goharshadi, E.K.; Entezari, M.H. Rheological properties of the nanofluids of tungsten oxide nanoparticles in ethylene glycol and glycerol. Microfluid. Nanofluid. 2015, 19, 1191–1202. [Google Scholar] [CrossRef]
- Tripkovic, D.; Vukmirovic, J.; Bajac, B.; Samardzic, N.; Djurdjic, E.; Stojanovic, G.; Srdica, V.V. Inkjet patterning of in situ sol–gel derived barium titanate thin films. Ceram. Int. 2016, 42, 1840–1846. [Google Scholar] [CrossRef]
- Duoss, E.B.; Twardowski, M.; Lewis, J.A. Sol-gel inks for direct-write assembly of functional oxides. Adv. Mater. 2007, 19, 3485–3489. [Google Scholar] [CrossRef]
- Nanba, T.; Takano, S.; Yasui, I.; Kudo, T. Structural study of peroxopolytungstic acid prepared from metallic tungsten and hydrogen peroxide. J. Solid State Chem. 1991, 90, 47–53. [Google Scholar] [CrossRef]
- Daniel, M.F.; Desbat, B.; Lassegues, J.C.; Gerand, B.; Figlartz, M. Infrared and Raman study of WO3 tungsten trioxides and WO3 x H2O tungsten trioxide hydrates. J. Solid State Chem. 1987, 67, 235–247. [Google Scholar] [CrossRef]
- Grošelj, N.; Gaberšček, M.; Opara Krašovec, U.; Orel, B.; Dražič, G.; Judeinstein, P. Electrical and IR spectroscopic studies of peroxopolytungstic acid/organic–inorganic hybrid gels. Solid State Ion. 1999, 125, 125–133. [Google Scholar] [CrossRef]
- Opara Krašovec, U.; Ješe, R.; Orel, B.; Grdadolnik, J.; Dražič, G. Structural, vibrational and gasochromic properties of porous WO3 films templated with a sol-gel organic-inorganic hybrid. Monatsefte Chem. 2002, 133, 1115–1133. [Google Scholar] [CrossRef]
- Opara Krašovec, U.; Šurca Vuk, A.; Orel, B. IR Spectroscopic studies of charged–discharged crystalline WO3 films. Electrochim. Acta 2001, 46, 1921–1929. [Google Scholar] [CrossRef]
- Metzger, T.G. The Rheology Handbook, 4th ed.; Vincentz Network: Hannover, Germany, 2014. [Google Scholar]
- Gottschalk, P.G.; Dunn, J.R. The five-parameter logistic: A characterization and comparison with the four-parameter logistic. Anal. Biochem. 2005, 343, 54–65. [Google Scholar] [CrossRef]
- Lapasin, R.; Pricl, S. Rheology of Industrial Polysaccharides: Theory and Applications; Blackie Academic & Professional: London, UK, 1995. [Google Scholar]
- Larson, R.G. The Structure and Rheology of Complex Fluids; Oxford University Press: New York, NY, USA, 1999. [Google Scholar]
- Winter, H.H.; Chambon, F. Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J. Rheol. 1986, 30, 367. [Google Scholar] [CrossRef]
- Chambon, F.; Petrovic, Z.S.; MacKnight, W.J.; Winter, H.H. Rheology of model polyurethanes at the gel point. Macromolecules 1986, 19, 2146–2149. [Google Scholar] [CrossRef] [Green Version]
20 °C | 30 °C | 40 °C | 50 °C | 60 °C | |
---|---|---|---|---|---|
δmax | 90.0 | 90.0 | 90.0 | 90.0 | 90.0 |
δmin1 | 7.4 | 0.0028 | 0.0028 | 0.0023 | 0.0027 |
tg (h) | 10.06 | 6.2 | 3.1 | 1.5 | 0.55 |
W | 7.8 | 26.4 | 30.18 | 24.73 | 18.56 |
s | 0.92 | 1.43 | 1.32 | 1.09 | 1.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Opara Krašovec, U.; Vidmar, T.; Klanjšek Gunde, M.; Cerc Korošec, R.; Slemenik Perše, L. In-Depth Rheological Characterization of Tungsten Sol-Gel Inks for Inkjet Printing. Coatings 2022, 12, 112. https://doi.org/10.3390/coatings12020112
Opara Krašovec U, Vidmar T, Klanjšek Gunde M, Cerc Korošec R, Slemenik Perše L. In-Depth Rheological Characterization of Tungsten Sol-Gel Inks for Inkjet Printing. Coatings. 2022; 12(2):112. https://doi.org/10.3390/coatings12020112
Chicago/Turabian StyleOpara Krašovec, Urša, Tjaša Vidmar, Marta Klanjšek Gunde, Romana Cerc Korošec, and Lidija Slemenik Perše. 2022. "In-Depth Rheological Characterization of Tungsten Sol-Gel Inks for Inkjet Printing" Coatings 12, no. 2: 112. https://doi.org/10.3390/coatings12020112
APA StyleOpara Krašovec, U., Vidmar, T., Klanjšek Gunde, M., Cerc Korošec, R., & Slemenik Perše, L. (2022). In-Depth Rheological Characterization of Tungsten Sol-Gel Inks for Inkjet Printing. Coatings, 12(2), 112. https://doi.org/10.3390/coatings12020112