Atomically Thin 2D van der Waals Magnetic Materials: Fabrications, Structure, Magnetic Properties and Applications
Abstract
:1. Introduction
2. Origin of Magnetism
2.1. Exchange Interaction
2.1.1. RKKY Exchange
2.1.2. Double Exchange
2.1.3. Superexchange
2.2. Magnetic Anisotropy and Magnetic Domain
2.3. Curie Temperature and Néel Temperature
2.4. 2D ferromagnetic Materials
3. Ferromagnetic 2D vdW Materials
3.1. Intrinsic Ferromagnetic 2D vdW Materials
3.1.1. Cr2Ge2Te6
3.1.2. Fe3GeTe2, Fe5GeTe2
3.1.3. CrX3 (X = I, Br)
3.1.4. MSe2 (M = Mn, V)
3.1.5. MnSn
3.1.6. FeB2 (B = Se, Te)
3.1.7. MnBi8Te13
3.2. Extrinsic Ferromagnetic 2D vdW Material
3.2.1. In2Se3
3.2.2. MoS2
3.2.3. PtSe2
3.2.4. PdSe2
3.2.5. VTe2
3.2.6. WS2
3.2.7. SnS2
3.2.8. GaSe and GeSe
4. Antiferromagnetic 2D vdW Materials
4.1. NiGa2S4, FeGa2S4, Fe2Ga2S5
4.2. XPS3 (X = Fe, Ni, Mn)
4.3. MnBi2nTe3n+1
5. Synthesis Techniques, Properties, Property Manipulation, and Devices Based on Ferromagnetism or Antiferromagnetism
5.1. Synthesis Techniques
5.2. Quantum Anomalous Hall Effect (QAHE)
5.3. Magnon
5.4. Magnetic Skyrmions
5.5. Property Manipulation
5.6. 2D vdW Heterostructures and FET
5.7. Spintronic Applications
6. Summary and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cullity, B.D.; Graham, C.D. Introduction to Magnetic Materials; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 10–15. [Google Scholar]
- Kittel, C. Introduction to Solid State Physics; Wiley: New York, NY, USA, 1990; pp. 90–93. [Google Scholar]
- Jonker, G.; Van Santen, J. Ferromagnetic compounds of manganese with perovskite structure. Physica 1950, 16, 337–349. [Google Scholar] [CrossRef]
- Duong, D.L.; Yun, S.J.; Lee, Y.H. van der Waals layered materials: Opportunities and challenges. ACS Nano 2017, 11, 11803–11830. [Google Scholar] [CrossRef] [PubMed]
- Matko, V.; Milanović, M. High resolution switching mode inductance-to-frequency converter with temperature compensation. Sensors 2014, 14, 19242–19259. [Google Scholar] [CrossRef]
- Yang, S.; Tan, M.; Yu, T.; Li, X.; Wang, X.; Zhang, J. Hybrid reduced graphene oxide with special magnetoresistance for wireless magnetic field sensor. Nanomicro Lett. 2020, 12, 69. [Google Scholar] [CrossRef] [Green Version]
- Matko, V.; Šafarič, R. Major improvements of quartz crystal pulling sensitivity and linearity using series reactance. Sensors 2009, 9, 8263–8270. [Google Scholar] [CrossRef] [PubMed]
- Onsager, L. Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition. Phys. Rev. 1944, 65, 117–149. [Google Scholar] [CrossRef]
- Berezinskii, V.L. Violation of long range order in one-dimensional and two-dimensional systems with a continuous symmetry group. I. Classical systems. Zh. Eksp. Teor. Fiz. 1970, 59, 907–920. [Google Scholar]
- Kosterlitz, J.M.; Thouless, D.J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C: Solid State Phys. 1973, 6, 1181–1203. [Google Scholar] [CrossRef]
- Mermin, N.D.; Wagner, H. Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models. Phys. Rev. Lett. 1966, 17, 1133–1136. [Google Scholar] [CrossRef]
- Nelson, D.; Piran, T.; Weinberg, S. Statistical Mechanics of Membranes and Surfaces; World Scientific: Singapore, 2004; pp. 19–45. [Google Scholar]
- Nelson, D.; Peliti, L. Fluctuations in membranes with crystalline and hexatic order. J. De Phys. 1987, 48, 1085–1092. [Google Scholar] [CrossRef]
- Le Doussal, P.; Radzihovsky, L. Self-consistent theory of polymerized membranes. Phys. Rev. Lett. 1992, 69, 1209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D.R.; Cheng, R.; Seyler, K.L.; Zhong, D.; Schmidgall, E.; McGuire, M.A.; Cobden, D.H.; et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, C.; Li, L.; Li, Z.; Ji, H.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C.; Wang, Y.; et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avsar, A.; Ciarrocchi, A.; Pizzochero, M.; Unuchek, D.; Yazyev, O.V.; Kis, A. Defect induced, layer-modulated magnetism in ultrathin metallic PtSe2. Nat. Nanotechnol. 2019, 14, 674–678. [Google Scholar] [CrossRef]
- Vobornik, I.; Manju, U.; Fujii, J.; Borgatti, F.; Torelli, P.; Krizmancic, D.; Hor, Y.S.; Cava, R.J.; Panaccione, G. Magnetic proximity effect as a pathway to spintronic applications of topological insulators. Nano Lett. 2011, 11, 4079–4082. [Google Scholar] [CrossRef] [Green Version]
- Buzdin, A.I. Proximity effects in superconductor-ferromagnet heterostructures. Rev. Mod. Phys. 2005, 77, 935–976. [Google Scholar] [CrossRef] [Green Version]
- Stahn, J.; Chakhalian, J.; Niedermayer, C.; Hoppler, J.; Gutberlet, T.; Voigt, J.; Treubel, F.; Habermeier, H.U.; Cristiani, G.; Keimer, B.; et al. Magnetic proximity effect in perovskite superconductor/ferromagnet multilayers. Phys. Rev. B Condens. Matter 2005, 71, 140509. [Google Scholar] [CrossRef] [Green Version]
- Leutenantsmeyer, J.C.; Kaverzin, A.A.; Wojtaszek, M.; Van Wees, B.J. Proximity induced room temperature ferromagnetism in graphene probed with spin currents. 2D Mater. 2016, 4, 014001. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.Z.; Zhang, J.; Feng, X.; Shen, J.; Zhang, Z.; Guo, M.; Li, K.; Ou, Y.; Wei, P.; Wang, L.L.; et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 2013, 340, 167–170. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhao, B.; Yao, Y.; Yang, Z. Robust quantum anomalous Hall effect in graphene-based van der Waals heterostructures. Phys. Rev. B Condens. Matter 2015, 92, 165418. [Google Scholar] [CrossRef]
- Cao, T.; Wang, G.; Han, W.; Ye, H.; Zhu, C.; Shi, J.; Niu, Q.; Tan, P.; Wang, E.; Liu, B.; et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 2012, 3, 887. [Google Scholar] [CrossRef] [Green Version]
- Longo, E.; Hussain, R.; Siligardi, G. Application of circular dichroism and magnetic circular dichroism for assessing biopharmaceuticals formulations photo-stability and small ligands binding properties. Int. J. Pharm. 2015, 480, 84–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feynman, R.P.; Leighton, R.B.; Sands, M. The Feynman Lectures on Physics, Vol. I: The New Millennium Edition: Mainly Mechanics, Radiation, and Heat; Basic books: USA, 2011; pp. 37.5–37.6. [Google Scholar]
- Stöhr, J.; Siegmann, H.C. Magnetism. Solid State Sci. 2006, 5, 133–143. [Google Scholar]
- Morrish, A.H. The Physical Principles of Magnetism; Wiley-IEEE Press: Hoboken, NJ, USA, 2001; pp. 292–300. [Google Scholar]
- Wertheim, G.K.; Jaccarino, V.; Wernick, J.H.; Buchanan, D.N.E. Range of the Exchange Interaction in Iron Alloys. Phys. Rev. Lett. 1964, 12, 24–27. [Google Scholar] [CrossRef]
- Coqblin, B.; Schrieffer, J.R. Exchange Interaction in Alloys with Cerium Impurities. Phys. Rev. 1969, 185, 847–853. [Google Scholar] [CrossRef]
- Ruderman, M.A.; Kittel, C. Indirect Exchange Coupling of Nuclear Magnetic Moments by Conduction Electrons. Phys. Rev. 1954, 96, 99–102. [Google Scholar] [CrossRef]
- Yafet, Y. Ruderman-Kittel-Kasuya-Yosida range function of a one-dimensional free-electron gas. Phys. Rev. B Condens. Matter 1987, 36, 3948–3949. [Google Scholar] [CrossRef]
- Parkin, S.S.; Mauri, D. Spin engineering: Direct determination of the Ruderman-Kittel-Kasuya-Yosida far-field range function in ruthenium. Phys. Rev. B Condens. Matter 1991, 44, 7131–7134. [Google Scholar] [CrossRef]
- Assadi, M.H.N.; Hanaor, D.A. Theoretical study on copper’s energetics and magnetism in TiO2 polymorphs. J. Appl. Phys. 2013, 113, 233913. [Google Scholar] [CrossRef] [Green Version]
- Black-Schaffer, A.M. RKKY coupling in graphene. Phys. Rev. B Condens. Matter 2010, 81, 205416. [Google Scholar] [CrossRef] [Green Version]
- Zener, C. Interaction between thed-Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure. Phys. Rev. 1951, 82, 403–405. [Google Scholar] [CrossRef]
- de Gennes, P.G. Effects of Double Exchange in Magnetic Crystals. Phys. Rev. 1960, 118, 141–154. [Google Scholar] [CrossRef]
- Korotin, M.; Anisimov, V.; Khomskii, D.; Sawatzky, G. CrO2: A self-doped double exchange ferromagnet. Phys. Rev. Lett. 1998, 80, 4305. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, K.; Lobb, C.; Greene, R.; Karabashev, S.; Shulyatev, D.; Arsenov, A.; Mukovskii, Y. Critical phenomena in the double-exchange ferromagnet La0.7Sr0.3MnO3. Phys. Rev. Lett. 1998, 81, 4740. [Google Scholar] [CrossRef]
- Kramers, H. L’interaction entre les atomes magnétogènes dans un cristal paramagnétique. Physica 1934, 1, 182–192. [Google Scholar] [CrossRef]
- Anderson, P.W. Antiferromagnetism. Theory of Superexchange Interaction. Phys. Rev. 1950, 79, 350–356. [Google Scholar] [CrossRef]
- Kanamori, J. Superexchange interaction and symmetry properties of electron orbitals. J. Phys. Chem. Solids 1959, 10, 87–98. [Google Scholar] [CrossRef]
- Anderson, P.W. New Approach to the Theory of Superexchange Interactions. Phys. Rev. 1959, 115, 2–13. [Google Scholar] [CrossRef]
- Gilleo, M. Superexchange interaction in ferrimagnetic garnets and spinels which contain randomly incomplete linkages. J. Phys. Chem. Solids 1960, 13, 33–39. [Google Scholar] [CrossRef]
- Moriya, T. Anisotropic Superexchange Interaction and Weak Ferromagnetism. Phys. Rev. 1960, 120, 91–98. [Google Scholar] [CrossRef]
- Moriya, T. New Mechanism of Anisotropic Superexchange Interaction. Phys. Rev. Lett. 1960, 4, 228–230. [Google Scholar] [CrossRef]
- Chikazumi, S.; Graham, C.D. Physics of Ferromagnetism 2e; Oxford University Press: Oxford, UK, 2009; pp. 129–130. [Google Scholar]
- DiVincenzo, D.P.; Bacon, D.; Kempe, J.; Burkard, G.; Whaley, K.B. Universal quantum computation with the exchange interaction. Nature 2000, 408, 339–342. [Google Scholar] [CrossRef] [Green Version]
- Aharoni, A. Introduction to the Theory of Ferromagnetism; Oxford University Press: Tokyo, NY, USA, 2000; pp. 60–66. [Google Scholar]
- Huang, C.; Feng, J.; Wu, F.; Ahmed, D.; Huang, B.; Xiang, H.; Deng, K.; Kan, E. Toward Intrinsic Room-Temperature Ferromagnetism in Two-Dimensional Semiconductors. J. Am. Chem. Soc. 2018, 140, 11519–11525. [Google Scholar] [CrossRef]
- Miao, N.; Xu, B.; Zhu, L.; Zhou, J.; Sun, Z. 2D Intrinsic Ferromagnets from van der Waals Antiferromagnets. J. Am. Chem. Soc. 2018, 140, 2417–2420. [Google Scholar] [CrossRef]
- Carteaux, V.; Brunet, D.; Ouvrard, G.; Andre, G. Crystallographic, magnetic and electronic structures of a new layered ferromagnetic compound Cr2Ge2Te6. Phys. Rev. B Condens. Matter 1995, 7, 69. [Google Scholar] [CrossRef]
- Liu, Y.; Petrovic, C. Critical behavior of quasi-two-dimensional semiconducting ferromagnet Cr2Ge2Te6. Phys. Rev. B Condens. Matter 2017, 96, 054406. [Google Scholar] [CrossRef] [Green Version]
- Zhuo, W.; Lei, B.; Wu, S.; Yu, F.; Zhu, C.; Cui, J.; Sun, Z.; Ma, D.; Shi, M.; Wang, H. Manipulating Ferromagnetism in Few-Layered Cr2Ge2Te6. Adv. Mater. 2021, 33, 2008586. [Google Scholar] [CrossRef]
- Tan, C.; Lee, J.; Jung, S.-G.; Park, T.; Albarakati, S.; Partridge, J.; Field, M.R.; McCulloch, D.G.; Wang, L.; Lee, C. Hard magnetic properties in nanoflake van der Waals Fe3GeTe2. Nat. Commun. 2018, 9, 1554. [Google Scholar] [CrossRef] [Green Version]
- Ohno, H.; Chiba, D.; Matsukura, F.; Omiya, T.; Abe, E.; Dietl, T.; Ohno, Y.; Ohtani, K. Electric-field control of ferromagnetism. Nature 2000, 408, 944–946. [Google Scholar] [CrossRef] [PubMed]
- Lohmann, M.; Su, T.; Niu, B.; Hou, Y.; Alghamdi, M.; Aldosary, M.; Xing, W.; Zhong, J.; Jia, S.; Han, W.; et al. Probing Magnetism in Insulating Cr2Ge2Te6 by Induced Anomalous Hall Effect in Pt. Nano Lett. 2019, 19, 2397–2403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Wan, Z.; Wang, C.; Chen, P.; Huang, B.; Cheng, X.; Qian, Q.; Li, J.; Zhang, Z.; Sun, G. Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order. Nat. Mater. 2021, 20, 818–825. [Google Scholar] [CrossRef]
- Meng, L.; Zhou, Z.; Xu, M.; Yang, S.; Si, K.; Liu, L.; Wang, X.; Jiang, H.; Li, B.; Qin, P.; et al. Anomalous thickness dependence of Curie temperature in air-stable two-dimensional ferromagnetic 1T-CrTe2 grown by chemical vapor deposition. Nat. Commun. 2021, 12, 809. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, Q.; Liu, W.; Niu, W.; Sun, J.; Cook, J.; Vaninger, M.; Miceli, P.F.; Singh, D.J.; Lian, S.-W. Room-temperature intrinsic ferromagnetism in epitaxial CrTe2 ultrathin films. Nat. Commun. 2021, 12, 2492. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, T.; Ding, M.; Dong, B.; Li, Y.; Chen, M.; Li, X.; Huang, J.; Wang, H.; Zhao, X.; et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat. Nanotechnol. 2018, 13, 554–559. [Google Scholar] [CrossRef]
- Matsukura, F.; Tokura, Y.; Ohno, H. Control of magnetism by electric fields. Nat. Nanotechnol. 2015, 10, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.-n.; Jin, K.-j.; Wang, J.-s.; Ge, C.; Guo, E.-J.; Ma, C.; Wang, C.; Xu, X. Tunable electronic structure and magnetic anisotropy in bilayer ferromagnetic semiconductor Cr2Ge2Te6. Sci. Rep. 2021, 11, 2744. [Google Scholar] [CrossRef] [PubMed]
- Deiseroth, H.-J.; Aleksandrov, K.; Reiner, C.; Kienle, L.; Kremer, R.K. Fe3GeTe2 and Ni3GeTe2—Two New Layered Transition-Metal Compounds: Crystal Structures, HRTEM Investigations, and Magnetic and Electrical Properties. Eur. J. Inorg. Chem. 2006, 8, 1561–1567. [Google Scholar] [CrossRef]
- Deng, Y.; Yu, Y.; Song, Y.; Zhang, J.; Wang, N.Z.; Sun, Z.; Yi, Y.; Wu, Y.Z.; Wu, S.; Zhu, J. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Zhuang, H.; Zou, Q.; Wu, Z.; Cao, G.; Tang, S.; Calder, S.A.; Kent, P.R.C.; Mandrus, D.; Gai, Z. Competing antiferromagnetism in a quasi-2D itinerant ferromagnet: Fe3GeTe2. 2D Mater. 2016, 4, 011005. [Google Scholar] [CrossRef]
- Fei, Z.; Huang, B.; Malinowski, P.; Wang, W.; Song, T.; Sanchez, J.; Yao, W.; Xiao, D.; Zhu, X.; May, A.F.; et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 2018, 17, 778–782. [Google Scholar] [CrossRef] [Green Version]
- Desai, S.B.; Madhvapathy, S.R.; Amani, M.; Kiriya, D.; Hettick, M.; Tosun, M.; Zhou, Y.; Dubey, M.; Ager III, J.W.; Chrzan, D.; et al. Gold-Mediated Exfoliation of Ultralarge Optoelectronically-Perfect Monolayers. Adv. Mater. 2016, 28, 4053–4058. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Yang, M.; Gong, C.; Chopdekar, R.V.; N’Diaye, A.T.; Turner, J.; Chen, G.; Scholl, A.; Shafer, P.; Arenholz, E.; et al. Patterning-Induced Ferromagnetism of Fe3GeTe2 van der Waals Materials beyond Room Temperature. Nano Lett. 2018, 18, 5974–5980. [Google Scholar] [CrossRef] [Green Version]
- May, A.F.; Ovchinnikov, D.; Zheng, Q.; Hermann, R.; Calder, S.; Huang, B.; Fei, Z.; Liu, Y.; Xu, X.; McGuire, M.A. Ferromagnetism near Room Temperature in the Cleavable van der Waals Crystal Fe5GeTe2. ACS Nano 2019, 13, 4436–4442. [Google Scholar] [CrossRef] [PubMed]
- Stahl, J.; Shlaen, E.; Johrendt, D. The van der Waals Ferromagnets Fe5−δGeTe2 and Fe5−δ−xNixGeTe2—Crystal Structure, Stacking Faults, and Magnetic Properties. Z. Für Anorg. Und Allg. Chem. 2018, 644, 1923–1929. [Google Scholar] [CrossRef]
- McGuire, M. Crystal and Magnetic Structures in Layered, Transition Metal Dihalides and Trihalides. Crystals 2017, 7, 121. [Google Scholar] [CrossRef]
- McGuire, M.A.; Dixit, H.; Cooper, V.R.; Sales, B.C. Coupling of Crystal Structure and Magnetism in the Layered, Ferromagnetic Insulator CrI3. Chem. Mater. 2015, 27, 612–620. [Google Scholar] [CrossRef]
- Jiang, S.; Shan, J.; Mak, K.F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 2018, 17, 406–410. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Li, L.; Wang, Z.; Mak, K.F.; Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 2018, 13, 549–553. [Google Scholar] [CrossRef]
- Zhang, Z.; Shang, J.; Jiang, C.; Rasmita, A.; Gao, W.; Yu, T. Direct Photoluminescence Probing of Ferromagnetism in Monolayer Two-Dimensional CrBr3. Nano Lett. 2019, 19, 3138–3142. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Sun, Z.; Wang, Z.; Gu, L.; Xu, X.; Wu, S.; Gao, C. Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 2019, 366, 983–987. [Google Scholar] [CrossRef] [Green Version]
- Pollard, R.J.; McCann, V.H.; Ward, J.B. Magnetic structures of α-MnS and MnSe from 57Fe Mossbauer spectroscopy. J. Phys. C: Solid State Phys. 1983, 16, 345–353. [Google Scholar] [CrossRef]
- Onari, S.; Arai, T. Infrared Lattice Vibrations and Dielectric Dispersion in Antiferromagnetic Semiconductor MnSe2. J. Phys. Soc. Jpn. 1979, 46, 184–188. [Google Scholar] [CrossRef]
- O’Hara, D.J.; Zhu, T.; Trout, A.H.; Ahmed, A.S.; Luo, Y.K.; Lee, C.H.; Brenner, M.R.; Rajan, S.; Gupta, J.A.; McComb, D.W.; et al. Room Temperature Intrinsic Ferromagnetism in Epitaxial Manganese Selenide Films in the Monolayer Limit. Nano Lett. 2018, 18, 3125–3131. [Google Scholar] [CrossRef] [PubMed]
- Ataca, C.; Şahin, H.; Ciraci, S. Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure. J. Phys. Chem. C 2012, 116, 8983–8999. [Google Scholar] [CrossRef]
- Kan, M.; Adhikari, S.; Sun, Q. Ferromagnetism in MnX2 (X = S, Se) monolayers. Phys. Chem. Chem. Phys. 2014, 16, 4990–4994. [Google Scholar] [CrossRef]
- Yang, J.; Wang, W.; Liu, Y.; Du, H.; Ning, W.; Zheng, G.; Jin, C.; Han, Y.; Wang, N.; Yang, Z.; et al. Thickness dependence of the charge-density-wave transition temperature in VSe2. Appl. Phys. Lett. 2014, 105, 063109. [Google Scholar] [CrossRef]
- Tong, W.-Y.; Gong, S.-J.; Wan, X.; Duan, C.-G. Concepts of ferrovalley material and anomalous valley Hall effect. Nat. Commun. 2016, 7, 13612. [Google Scholar] [CrossRef]
- Duvjir, G.; Choi, B.K.; Jang, I.; Ulstrup, S.; Kang, S.; Thi Ly, T.; Kim, S.; Choi, Y.H.; Jozwiak, C.; Bostwick, A.; et al. Emergence of a Metal–Insulator Transition and High-Temperature Charge-Density Waves in VSe2 at the Monolayer Limit. Nano Lett. 2018, 18, 5432–5438. [Google Scholar] [CrossRef] [Green Version]
- Spiecker, E.; Schmid, A.K.; Minor, A.M.; Dahmen, U.; Hollensteiner, S.; Jäger, W. Self-Assembled Nanofold Network Formation on Layered Crystal Surfaces during Metal Intercalation. Phys. Rev. Lett. 2006, 96, 086401. [Google Scholar] [CrossRef] [Green Version]
- Boscher, N.D.; Blackman, C.S.; Carmalt, C.J.; Parkin, I.P.; Prieto, A.G. Atmospheric pressure chemical vapour deposition of vanadium diselenide thin films. Appl. Surf. Sci. 2007, 253, 6041–6046. [Google Scholar] [CrossRef]
- Bonilla, M.; Kolekar, S.; Ma, Y.; Diaz, H.C.; Kalappattil, V.; Das, R.; Eggers, T.; Gutierrez, H.R.; Phan, M.-H.; Batzill, M. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 2018, 13, 289–293. [Google Scholar] [CrossRef]
- Xu, K.; Chen, P.; Li, X.; Wu, C.; Guo, Y.; Zhao, J.; Wu, X.; Xie, Y. Ultrathin Nanosheets of Vanadium Diselenide: A Metallic Two-Dimensional Material with Ferromagnetic Charge-Density-Wave Behavior. Angew. Chem. Int. Ed. 2013, 52, 10477–10481. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Tu, K.; Chen, Z. Versatile Electronic Properties of VSe2 Bulk, Few-Layers, Monolayer, Nanoribbons, and Nanotubes: A Computational Exploration. J. Phys. Chem. C 2014, 118, 21264–21274. [Google Scholar] [CrossRef]
- Yu, W.; Li, J.; Herng, T.S.; Wang, Z.; Zhao, Y.; Chi, X.; Fu, W.; Abdelwahab, I.; Zhou, J.; Dan, J.; et al. Chemically Exfoliated VSe2 Monolayers with Room-Temperature Ferromagnetism. Adv. Mater. 2019, 31, 1903779. [Google Scholar]
- Yu, L.; Yao, K.; Liu, Z.; Zhang, Y. Electronic structure and magnetic property of MnSn: Prediction of half-metallic ferromagnetism in zinc-blende structure. Solid State Commun. 2007, 144, 18–22. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Dai, X.; Liu, H.; Yu, X. Ab initio investigation of half-metal state in zinc-blende MnSn and MnC. Phys. B Condens. Matter 2008, 403, 2473–2476. [Google Scholar] [CrossRef]
- Yuan, Q.-Q.; Guo, Z.; Shi, Z.-Q.; Zhao, H.; Jia, Z.-Y.; Wang, Q.; Sun, J.; Wu, D.; Li, S.-C. Ferromagnetic MnSn monolayer epitaxially grown on silicon substrate. Chin. Phys. Lett. 2020, 37, 077502. [Google Scholar] [CrossRef]
- Liu, A.; Chen, X.; Zhang, Z.; Jiang, Y.; Shi, C. Selective synthesis and magnetic properties of FeSe2 and FeTe2 nanocrystallites obtained through a hydrothermal co-reduction route. Solid State Commun. 2006, 138, 538–541. [Google Scholar] [CrossRef]
- Liu, H.; Xue, Y. Van Der Waals Epitaxial Growth and Phase Transition of Layered FeSe2 Nanocrystals. Adv. Mater. 2021, 33, 2008456. [Google Scholar] [CrossRef]
- Kang, L.; Ye, C.; Zhao, X.; Zhou, X.; Hu, J.; Li, Q.; Liu, D.; Das, C.M.; Yang, J.; Hu, D. Phase-controllable growth of ultrathin 2D magnetic FeTe crystals. Nat. Commun. 2020, 11, 3729. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Bian, C.; He, Y.; Guo, J.; Zhang, P.; Liu, L.; Wei, Y.; Meng, L.; Jiang, H.; Li, B. Ultrathin FeTe nanosheets with tetragonal and hexagonal phases synthesized by chemical vapor deposition. Mater. Today 2021, 45, 35–43. [Google Scholar] [CrossRef]
- Hu, C.; Ding, L.; Gordon, K.N.; Ghosh, B.; Li, H.; Lian, S.-W.; Garrison Linn, A.; Tien, H.-J.; Huang, C.-Y.; Sreenivasa Reddy, P.V.; et al. Realization of an intrinsic, ferromagnetic axion insulator in MnBi8Te13. Sci. Adv. 2019, 6, eaba4275. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Zhu, J.; Wang, Z.; Gao, Y.; Xiao, D.; Gu, Y.; Zhang, Z.; Zhu, W. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials. Nat. Commun. 2017, 8, 14956. [Google Scholar] [CrossRef] [Green Version]
- Xue, F.; He, X.; Retamal, J.R.D.; Han, A.; Zhang, J.; Liu, Z.; Huang, J.-K.; Hu, W.; Tung, V.; He, J.-H.; et al. Gate-Tunable and Multidirection-Switchable Memristive Phenomena in a Van Der Waals Ferroelectric. Adv. Mater. 2019, 31, 1901300. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zeng, Q.; Lv, D.; Sun, L.; Niu, L.; Fu, W.; Liu, F.; Shen, Z.; Jin, C.; Liu, Z. Controlled Synthesis of High-Quality Monolayered α-In2Se3 via Physical Vapor Deposition. Nano Lett. 2015, 15, 6400–6405. [Google Scholar] [CrossRef]
- Yang, H.; Pan, L.; Xiao, M.; Fang, J.; Cui, Y.; Wei, Z. Iron-doping induced multiferroic in two-dimensional In2Se3. Sci. China Mater. 2019, 63, 421–428. [Google Scholar] [CrossRef] [Green Version]
- Jasinski, J.; Swider, W.; Washburn, J.; Liliental-Weber, Z.; Chaiken, A.; Nauka, K.; Gibson, G.A.; Yang, C.C. Crystal structure of κ-In2Se3. Appl. Phys. Lett. 2002, 81, 4356–4358. [Google Scholar] [CrossRef] [Green Version]
- Thomas, B. Effect of in situ post-deposition annealing on the formation of α-In2Se3 thin films grown by elemental evaporation. Appl. Phys. A 1992, 54, 293–299. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Steer, E.D.; Smith, E.F.; Kudrynskyi, Z.R.; Kovalyuk, Z.D.; Eaves, L.; Patanè, A.; Beton, P.H. Epitaxial growth of γ-InSe and α, β, and γ-In2Se3 on ε-GaSe. 2D Mater. 2018, 5, 035026. [Google Scholar] [CrossRef] [Green Version]
- Osamura, K.; Murakami, Y.; Tomiie, Y. Crystal Structures of α-and β-Indium Selenide, In2Se3. J. Phys. Soc. Jpn. 1966, 21, 1848. [Google Scholar] [CrossRef]
- Sun, W.; Wang, W.; Chen, D.; Cheng, Z.; Wang, Y. Valence mediated tunable magnetism and electronic properties by ferroelectric polarization switching in 2D FeI2/In2Se3 van der Waals heterostructures. Nanoscale 2019, 11, 9931–9936. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, R.S.; Engel, M.; Lombardo, A.; Krupke, R.; Ferrari, A.C.; Avouris, P.; Steiner, M. Electroluminescence in Single Layer MoS2. Nano Lett. 2013, 13, 1416–1421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, D.; Liu, G.-B.; Feng, W.; Xu, X.; Yao, W. Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802. [Google Scholar] [CrossRef] [Green Version]
- Mak, K.F.; McGill, K.L.; Park, J.; McEuen, P.L. The valley Hall effect in MoS2 transistors. Science 2014, 344, 1489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, H.; Zhang, Y.-W. Edge-dependent structural, electronic and magnetic properties of MoS2 nanoribbons. J. Mater. Chem. 2012, 22, 7280–7290. [Google Scholar] [CrossRef]
- Kou, L.; Tang, C.; Zhang, Y.; Heine, T.; Chen, C.; Frauenheim, T. Tuning Magnetism and Electronic Phase Transitions by Strain and Electric Field in Zigzag MoS2 Nanoribbons. J. Phys. Chem. Lett. 2012, 3, 2934–2941. [Google Scholar] [CrossRef]
- Han, X.; Benkraouda, M.; Qamhieh, N.; Amrane, N. Understanding ferromagnetism in Ni-doped MoS2 monolayer from first principles. Chem. Phys. 2020, 528, 110501. [Google Scholar] [CrossRef]
- Jeon, G.W.; Lee, K.W.; Lee, C.E. Ferromagnetism in monolayer MoS2 dictated by hydrogen adsorption sites and concentration. Phys. E 2018, 104, 309–313. [Google Scholar] [CrossRef]
- He, J.; Wu, K.; Sa, R.; Li, Q.; Wei, Y. Magnetic properties of nonmetal atoms absorbed MoS2 monolayers. Appl. Phys. Lett. 2010, 96, 082504. [Google Scholar] [CrossRef]
- Gao, D.; Shi, S.; Tao, K.; Xia, B.; Xue, D. Tunable ferromagnetic ordering in MoS2 nanosheets with fluorine adsorption. Nanoscale 2015, 7, 4211–4216. [Google Scholar] [CrossRef]
- Feng, Y.P.; Shen, L.; Yang, M.; Wang, A.; Zeng, M.; Wu, Q.; Chintalapati, S.; Chang, C.-R. Prospects of spintronics based on 2D materials. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2017, 7, e1313. [Google Scholar] [CrossRef]
- Cheng, Y.C.; Zhu, Z.Y.; Mi, W.B.; Guo, Z.B.; Schwingenschloegl, U. Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer MoS2 systems. Phys. Rev. B Condens. Matter 2013, 87, 100401. [Google Scholar] [CrossRef] [Green Version]
- Andriotis, A.N.; Menon, M. Tunable magnetic properties of transition metal doped MoS2. Phys. Rev. B Condens. Matter 2014, 90, 125304. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.L.; An, Y.R.; Guo, W.J. Ferromagnetism in Transitional Metal-Doped MoS2 Monolayer. Nanoscale Res. Lett. 2016, 11, 154. [Google Scholar] [CrossRef] [Green Version]
- Han, S.W.; Park, Y.; Hwang, Y.H.; Lee, W.G.; Hong, S.C. Investigation of electron irradiation-induced magnetism in layered MoS2 single crystals. Appl. Phys. Lett. 2016, 109, 252403. [Google Scholar] [CrossRef] [Green Version]
- Yao, W.; Wang, E.; Huang, H.; Deng, K.; Yan, M.; Zhang, K.; Miyamoto, K.; Okuda, T.; Li, L.; Wang, Y.; et al. Direct observation of spin-layer locking by local Rashba effect in monolayer semiconducting PtSe2 film. Nat. Commun. 2017, 8, 14216. [Google Scholar] [CrossRef]
- Yim, C.; Lee, K.; McEvoy, N.; O’Brien, M.; Riazimehr, S.; Berner, N.C.; Cullen, C.P.; Kotakoski, J.; Meyer, J.C.; Lemme, M.C.; et al. High-Performance Hybrid Electronic Devices from Layered PtSe2 Films Grown at Low Temperature. ACS Nano 2016, 10, 9550–9558. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Cheng, Y.; Tian, T.; Hu, X.; Zeng, K.; Zhang, G.; Zhang, Y.-W. Structure, Stability, and Kinetics of Vacancy Defects in Monolayer PtSe2: A First-Principles Study. ACS Omega 2017, 2, 8640–8648. [Google Scholar] [CrossRef] [Green Version]
- Oyedele, A.D.; Yang, S.; Liang, L.; Puretzky, A.A.; Wang, K.; Zheng, J.; Yu, P.; Pudasaini, P.R.; Ghosh, A.W.; Liu, Z.; et al. PdSe2: Pentagonal Two-Dimensional Layers with High Air Stability for Electronics. J. Am. Chem. Soc. 2017, 139, 14090–14097. [Google Scholar]
- Qin, D.; Yan, P.; Ding, G.; Ge, X.; Song, H.; Gao, G. Monolayer PdSe2: A promising two-dimensional thermoelectric material. Sci. Rep. 2018, 8, 5639–5647. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.-H.; Liu, B.-G. Hole-doping-induced half-metallic ferromagnetism in a highly-air-stable PdSe2 monolayer under uniaxial stress. J. Mater. Chem. C 2018, 6, 6792–6798. [Google Scholar] [CrossRef] [Green Version]
- Conley, H.J.; Wang, B.; Ziegler, J.I.; Haglund, R.F., Jr.; Pantelides, S.T.; Bolotin, K.I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13, 3626–3630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, N.S.; Cowern, N.E.B.; Sealy, B.J. Model for electron mobility as a function of carrier concentration and strain in heavily doped strained silicon. Appl. Phys. Lett. 2009, 94, 252109. [Google Scholar] [CrossRef]
- Aslan, O.B.; Deng, M.; Heinz, T.F. Strain tuning of excitons in monolayer WSe2. Phys. Rev. B Condens. Matter 2018, 98, 115308. [Google Scholar] [CrossRef] [Green Version]
- Pan, H. Electronic and Magnetic Properties of Vanadium Dichalcogenides Monolayers Tuned by Hydrogenation. J. Phys. Chem. C 2014, 118, 13248–13253. [Google Scholar] [CrossRef]
- Pan, H. Magnetic and electronic evolutions of hydrogenated VTe2 monolayer under tension. Sci. Rep. 2014, 4, 7524. [Google Scholar] [CrossRef]
- Lasek, K.; Coelho, P.M.; Zberecki, K.; Xin, Y.; Kolekar, S.K.; Li, J.; Batzill, M. Molecular beam epitaxy of transition metal (Ti-, V-, and Cr-) tellurides: From monolayer ditellurides to multilayer self-intercalation compounds. ACS nano 2020, 14, 8473–8484. [Google Scholar] [CrossRef]
- Bhandavat, R.; David, L.; Singh, G. Synthesis of Surface-Functionalized WS2 Nanosheets and Performance as Li-Ion Battery Anodes. J. Phys. Chem. Lett. 2012, 3, 1523–1530. [Google Scholar] [CrossRef]
- Ma, Y.; Dai, Y.; Guo, M.; Niu, C.; Lu, J.; Huang, B. Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers. Phys. Chem. Chem. Phys. 2011, 13, 15546–15553. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef]
- Son, Y.-W.; Cohen, M.L.; Louie, S.G. Energy Gaps in Graphene Nanoribbons. Phys. Rev. Lett. 2006, 97, 216803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, W.-J.; Xie, Y.-E.; Liu, L.-M.; Wang, R.-Z.; Wei, X.-L.; Lau, L.; Zhong, J.-X.; Chen, Y.-P. R-graphyne: A new two-dimensional carbon allotrope with versatile Dirac-like point in nanoribbons. J. Mater. Chem. A 2013, 1, 5341–5346. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.-B.; Liu, L.-M. Tunable electronic and magnetic properties of WS2 nanoribbons. J. Appl. Phys. 2013, 114, 093710. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Zheng, B.; Sebastian, A.; Olson, D.H.; Liu, M.; Fujisawa, K.; Pham, Y.T.H.; Jimenez, V.O.; Kalappattil, V.; Miao, L. Monolayer vanadium-doped tungsten disulfide: A room-temperature dilute magnetic semiconductor. Adv. Sci. 2020, 7, 2001174. [Google Scholar] [CrossRef] [PubMed]
- Su, G.; Hadjiev, V.G.; Loya, P.E.; Zhang, J.; Lei, S.; Maharjan, S.; Dong, P.; Ajayan, M.; Lou, J.; Peng, H. Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application. Nano Lett. 2015, 15, 506–513. [Google Scholar] [CrossRef]
- Li, B.; Xing, T.; Zhong, M.; Huang, L.; Lei, N.; Zhang, J.; Li, J.; Wei, Z. A two-dimensional Fe-doped SnS2 magnetic semiconductor. Nat. Commun. 2017, 8, 1958. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Nie, Y.; Liu, Y.; Yan, K.; Hong, J.; Jin, C.; Zhou, Y.; Yin, J.; Liu, Z.; Peng, H. Epitaxy and photoresponse of two-dimensional GaSe crystals on flexible transparent mica sheets. ACS Nano 2014, 8, 1485–1490. [Google Scholar] [CrossRef]
- Li, X.; Lin, M.-W.; Puretzky, A.A.; Idrobo, J.C.; Ma, C.; Chi, M.; Yoon, M.; Rouleau, C.M.; Kravchenko, I.I.; Geohegan, D.B.; et al. Controlled Vapor Phase Growth of Single Crystalline, Two-Dimensional GaSe Crystals with High Photoresponse. Sci. Rep. 2014, 4, 5497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, T.; Li, Z.; Louie, S.G. Tunable magnetism and half-metallicity in hole-doped monolayer GaSe. Phys. Rev. Lett. 2015, 114, 236602. [Google Scholar] [CrossRef]
- Lu, Y.; Ke, C.; Fu, M.; Lin, W.; Zhang, C.; Chen, T.; Li, H.; Kang, J.; Wu, Z.; Wu, Y. Magnetic modification of GaSe monolayer by absorption of single Fe atom. RSC Adv. 2017, 7, 4285–4290. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.; Ke, C.; Fu, M.; Wu, Y.; Zhang, C.; Lin, W.; Lu, S.; Wu, Z.; Yang, W.; Kang, J. Electrically tunable magnetic configuration on vacancy-doped GaSe monolayer. Phys. Lett. A 2018, 382, 667–672. [Google Scholar] [CrossRef]
- Ke, C.; Wu, Y.; Guo, G.-Y.; Wu, Z.; Kang, J. Electrically controllable magnetic properties of Fe-doped GaSe monolayer. J. Phys. D Appl. Phys. 2019, 52, 175001. [Google Scholar] [CrossRef]
- Okazaki, A. The crystal structure of germanium selenide GeSe. J. Phys. Soc. Jpn. 1958, 13, 1151–1155. [Google Scholar] [CrossRef]
- Xue, D.J.; Tan, J.; Hu, J.S.; Hu, W.; Guo, Y.G.; Wan, L.J. Anisotropic photoresponse properties of single micrometer-sized GeSe nanosheet. Adv. Mater. 2012, 24, 4528–4533. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, D.; Ghosh, T.; Roychowdhury, S.; Arora, R.; Sajan, S.; Sheet, G.; Waghmare, U.V.; Biswas, K. Ferroelectric instability induced ultralow thermal conductivity and high thermoelectric performance in rhombohedral p-type GeSe crystal. J. Am. Chem. Soc. 2020, 142, 12237–12244. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, S.; Sun, S.; Xie, M.; Cai, B.; Zeng, H. GeSe monolayer semiconductor with tunable direct band gap and small carrier effective mass. Appl. Phys. Lett. 2015, 107, 122107. [Google Scholar] [CrossRef]
- Zhao, H.; Mao, Y.; Mao, X.; Shi, X.; Xu, C.; Wang, C.; Zhang, S.; Zhou, D. Band structure and photoelectric characterization of GeSe monolayers. Adv. Funct. Mater. 2018, 28, 1704855. [Google Scholar] [CrossRef]
- Ishihara, Y.; Nakada, I. Negative Magnetoresistance of GeSe in a Weak Magnetic Field. Phys. Status Solidi B Basic Res. 1981, 106, K27–K31. [Google Scholar] [CrossRef]
- Dogguy-Smiri, L.; Dung, N.-H.; Pardo, M.P. Structure cristalline du polytype FeGa2S4 α 1T. Mater. Res. Bull. 1980, 15, 861–866. [Google Scholar] [CrossRef]
- Dogguy-Smiri, L.; Dung, N.-H. Structure du polytype rhomboedrique 3R du sulfure double de fer et de gallium Fe2Ga2S5. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 1982, 38, 372–375. [Google Scholar] [CrossRef]
- Takada, K.; Sakurai, H.; Takayama-Muromachi, E.; Izumi, F.; Dilanian, R.A.; Sasaki, T. Superconductivity in two-dimensional CoO2 layers. Nature 2003, 422, 53–55. [Google Scholar] [CrossRef]
- Nakatsuji, S.; Nambu, Y.; Tonomura, H.; Sakai, O.; Jonas, S.; Broholm, C.; Tsunetsugu, H.; Qiu, Y.; Maeno, Y. Spin Disorder on a Triangular Lattice. Science 2005, 309, 1697. [Google Scholar] [CrossRef] [Green Version]
- Nakatsuji, S.; Tonomura, H.; Onuma, K.; Nambu, Y.; Sakai, O.; Maeno, Y.; Macaluso, R.T.; Chan, J.Y. Spin disorder and order in quasi-2D triangular Heisenberg antiferromagnets: Comparative study of FeGa2S4, Fe2Ga2S5, and NiGa2S4. Phys. Rev. Lett. 2007, 99, 157203. [Google Scholar] [CrossRef]
- Lee, J.-U.; Lee, S.; Ryoo, J.H.; Kang, S.; Kim, T.Y.; Kim, P.; Park, C.-H.; Park, J.-G.; Cheong, H. Ising-Type Magnetic Ordering in Atomically Thin FePS3. Nano Lett. 2016, 16, 7433–7438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.; Lim, S.Y.; Lee, J.-U.; Lee, S.; Kim, T.Y.; Park, K.; Jeon, G.S.; Park, C.-H.; Park, J.-G.; Cheong, H. Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3. Nat. Commun. 2019, 10, 345. [Google Scholar] [CrossRef]
- Xing, W.; Qiu, L.; Wang, X.; Yao, Y.; Ma, Y.; Cai, R.; Jia, S.; Xie, X.C.; Han, W. Magnon Transport in Quasi-Two-Dimensional van der Waals Antiferromagnets. Phys. Rev. X 2019, 9, 011026. [Google Scholar] [CrossRef] [Green Version]
- Cuccoli, A.; Roscilde, T.; Tognetti, V.; Vaia, R.; Verrucchi, P. Quantum Monte Carlo study of S = 1/2 weakly anisotropic antiferromagnets on the square lattice. Phys. Rev. B Condens. Matter 2003, 67, 104414. [Google Scholar] [CrossRef] [Green Version]
- Cardy, J. Scaling and Renormalization in Statistical Physics; Cambridge University Press: Cambridge, UK, 1996; pp. 113–131. [Google Scholar]
- Joy, P.A.; Vasudevan, S. Magnetism in the layered transition-metal thiophosphates MPS3 (M = Mn, Fe, and Ni). Phys. Rev. B Condens. Matter 1992, 46, 5425–5433. [Google Scholar] [CrossRef]
- Ouvrard, G.; Brec, R.; Rouxel, J. Structural determination of some MPS3 layered phases (M = Mn, Fe, Co, Ni and Cd). Mater. Res. Bull. 1985, 20, 1181–1189. [Google Scholar] [CrossRef]
- Coak, M.; Jarvis, D.; Hamidov, H.; Haines, C.; Alireza, P.; Liu, C.; Son, S.; Hwang, I.; Lampronti, G.; Daisenberger, D. Tuning dimensionality in van-der-Waals antiferromagnetic mott insulators TMPS3. J. Phys. Condens. Matter 2019, 32, 124003. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-G. Opportunities and challenges of 2D magnetic van der Waals materials: Magnetic graphene? J. Phys. Condens. Matter 2016, 28, 301001. [Google Scholar] [CrossRef] [Green Version]
- Burch, K.S.; Mandrus, D.; Park, J.-G. Magnetism in two-dimensional van der Waals materials. Nature 2018, 563, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Lee, J.U.; Cheong, H. Raman spectroscopy of two-dimensional magnetic van der Waals materials. Nanotechnology 2019, 30, 452001. [Google Scholar] [CrossRef]
- Yan, J.-Q.; Zhang, Q.; Heitmann, T.; Huang, Z.; Chen, K.; Cheng, J.-G.; Wu, W.; Vaknin, D.; Sales, B.C.; McQueeney, R.J. Crystal growth and magnetic structure of MnBi2Te4. Phys. Rev. Mater. 2019, 3, 064202. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Liu, S.; Liu, C.; Zhang, J.; Xu, Y.; Yu, R.; Wu, Y.; Zhang, Y.; Fan, S. Antiferromagnetic topological insulator MnBi2Te4: Synthesis and magnetic properties. Phys. Chem. Chem. Phys. 2020, 22, 556–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, J.Q.; Okamoto, S.; McGuire, M.A.; May, A.F.; McQueeney, R.J.; Sales, B.C. Evolution of structural, magnetic, and transport properties in MnBi2-xSbxTe4. Phys. Rev. B Condens. Matter 2019, 100, 104409. [Google Scholar] [CrossRef] [Green Version]
- Mong, R.S.K.; Essin, A.M.; Moore, J.E. Antiferromagnetic topological insulators. Phys. Rev. B Condens. Matter 2010, 81, 245209. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.-Q.; Liu, Y.; Parker, D.S.; Wu, Y.; Aczel, A.; Matsuda, M.; McGuire, M.A.; Sales, B.C. A-type antiferromagnetic order in MnBi4Te7 and MnBi6Te10 single crystals. Phys. Rev. Matter. 2020, 4, 054202. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666. [Google Scholar] [CrossRef] [Green Version]
- Yi, M.; Shen, Z. A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 2015, 3, 11700–11715. [Google Scholar] [CrossRef]
- Huang, Y.; Pan, Y.-H.; Yang, R.; Bao, L.-H.; Meng, L.; Luo, H.-L.; Cai, Y.-Q.; Liu, G.-D.; Zhao, W.-J.; Zhou, Z.; et al. Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 2020, 11, 2453. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.-Y.; Kim, M.; Kim, S.-I.; Xu, S.; Choi, J.-H.; Whang, D.; Watanabe, K.; Taniguchi, T.; Park, D.S.; Seo, J. Layer-engineered large-area exfoliation of graphene. Sci. Adv. 2020, 6, eabc6601. [Google Scholar] [CrossRef]
- Coleman, J.N.; Lotya, M.; O’Neill, A.; Bergin, S.D.; King, P.J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R.J. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Z.; Sun, T.; Zhu, J.; Huang, X.; Yin, Z.; Lu, G.; Fan, Z.; Yan, Q.; Hng, H.H.; Zhang, H. An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew. Chem. Int. Ed. 2012, 51, 9052–9056. [Google Scholar] [CrossRef]
- Somani, P.R.; Somani, S.P.; Umeno, M. Planer nano-graphenes from camphor by CVD. Chem. Phys. Lett. 2006, 430, 56–59. [Google Scholar] [CrossRef]
- Cai, Z.; Liu, B.; Zou, X.; Cheng, H.-M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 2018, 118, 6091–6133. [Google Scholar] [CrossRef]
- Oh, S. Physics. The complete quantum Hall trio. Science 2013, 340, 153–154. [Google Scholar] [CrossRef] [PubMed]
- Haldane, F.D.M. Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the “Parity Anomaly”. Phys. Rev. Lett. 1988, 61, 2015–2018. [Google Scholar] [CrossRef]
- Deng, Y.; Yu, Y.; Shi, M.Z.; Guo, Z.; Xu, Z.; Wang, J.; Chen, X.H.; Zhang, Y. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 2020, 367, 895–900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otrokov, M.M.; Klimovskikh, I.I.; Bentmann, H.; Estyunin, D.; Zeugner, A.; Aliev, Z.S.; Gaß, S.; Wolter, A.U.B.; Koroleva, A.V.; Shikin, A.M.; et al. Prediction and observation of an antiferromagnetic topological insulator. Nature 2019, 576, 416–422. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Du, S.; Wang, Z.; Gu, B.-L.; Zhang, S.-C.; He, K.; Duan, W.; Xu, Y. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials. Sci. Adv. 2019, 5, eaaw5685. [Google Scholar] [CrossRef] [Green Version]
- Ghazaryan, D.; Greenaway, M.T.; Wang, Z.; Guarochico-Moreira, V.H.; Vera-Marun, I.J.; Yin, J.; Liao, Y.; Morozov, S.V.; Kristanovski, O.; Lichtenstein, A.I.; et al. Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3. Nat. Electron. 2018, 1, 344–349. [Google Scholar] [CrossRef] [Green Version]
- Bogdanov, A.; Rößler, U. Chiral symmetry breaking in magnetic thin films and multilayers. Phys. Rev. Lett. 2001, 87, 037203. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, J.; Mochizuki, M.; Nagaosa, N. Current-induced skyrmion dynamics in constricted geometries. Nat. Nanotechnol. 2013, 8, 742–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roessler, U.K.; Bogdanov, A.; Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 2006, 442, 797–801. [Google Scholar] [CrossRef] [Green Version]
- Dupé, B.; Hoffmann, M.; Paillard, C.; Heinze, S. Tailoring magnetic skyrmions in ultra-thin transition metal films. Nat. Commun. 2014, 5, 4030. [Google Scholar] [CrossRef]
- Romming, N.; Hanneken, C.; Menzel, M.; Bickel, J.E.; Wolter, B.; von Bergmann, K.; Kubetzka, A.; Wiesendanger, R. Writing and deleting single magnetic skyrmions. Science 2013, 341, 636–639. [Google Scholar] [CrossRef] [Green Version]
- Mühlbauer, S.; Binz, B.; Jonietz, F.; Pfleiderer, C.; Rosch, A.; Neubauer, A.; Georgii, R.; Böni, P. Skyrmion lattice in a chiral magnet. Science 2009, 323, 915–919. [Google Scholar] [CrossRef] [Green Version]
- Hsu, P.-J.; Kubetzka, A.; Finco, A.; Romming, N.; von Bergmann, K.; Wiesendanger, R. Electric-field-driven switching of individual magnetic skyrmions. Nat. Nanotechnol. 2017, 12, 123–126. [Google Scholar] [CrossRef]
- Sondhi, S.L.; Karlhede, A.; Kivelson, S.; Rezayi, E. Skyrmions and the crossover from the integer to fractional quantum Hall effect at small Zeeman energies. Phys. Rev. B Condens. Matter 1993, 47, 16419. [Google Scholar] [CrossRef]
- Sampaio, J.; Cros, V.; Rohart, S.; Thiaville, A.; Fert, A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotechnol. 2013, 8, 839–844. [Google Scholar] [CrossRef]
- Tomasello, R.; Martinez, E.; Zivieri, R.; Torres, L.; Carpentieri, M.; Finocchio, G. A strategy for the design of skyrmion racetrack memories. Sci. Rep. 2014, 4, 6784. [Google Scholar] [CrossRef] [Green Version]
- Kang, W.; Huang, Y.; Zheng, C.; Lv, W.; Lei, N.; Zhang, Y.; Zhang, X.; Zhou, Y.; Zhao, W. Voltage controlled magnetic skyrmion motion for racetrack memory. Sci. Rep. 2016, 6, 23164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Ezawa, M. A reversible conversion between a skyrmion and a domain-wall pair in a junction geometry. Nat. Commun. 2014, 5, 4652. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Ezawa, M.; Zhou, Y. Magnetic skyrmion logic gates: Conversion, duplication and merging of skyrmions. Sci. Rep. 2015, 5, 9400. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Iacocca, E.; Awad, A.A.; Dumas, R.K.; Zhang, F.; Braun, H.B.; Åkerman, J. Dynamically stabilized magnetic skyrmions. Nat. Commun. 2015, 6, 8193. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Wu, H.; Zhang, L.; Zhang, W.; Li, L.; Kawakami, T.; Sugawara, K.; Sato, T.; Zhang, G.; Gao, P.; et al. Highly Tunable Near-Room Temperature Ferromagnetism in Cr-Doped Layered Td-WTe2. Adv. Funct. Mater. 2021, 31, e2008116. [Google Scholar] [CrossRef]
- Li, C.; Hsu, S.C.; Lin, J.X.; Chen, J.Y.; Chuang, K.C.; Chang, Y.P.; Hsu, H.S.; Chen, C.H.; Lin, T.S.; Liu, Y.H. Giant Zeeman Splitting for Monolayer Nanosheets at Room Temperature. J. Am. Chem. Soc. 2020, 142, 20616–20623. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Luo, T.; Lin, Z.; Shi, J.; Liu, Y.; Wang, P.; Zhang, Y.; Duan, W.; Wang, J. Magnetic Moments Induced by Atomic Vacancies in Transition Metal Dichalcogenide Flakes. Adv. Mater. 2020, 33, e2005465. [Google Scholar] [CrossRef] [PubMed]
- Sharpe, A.L.; Fox, E.J.; Barnard, A.W.; Finney, J.; Watanabe, K.; Taniguchi, T.; Kastner, M.A. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 2019, 365, 605–608. [Google Scholar] [CrossRef] [Green Version]
- Bultinck, N.; Chatterjee, S.; Zaletel, M.P. Mechanism for Anomalous Hall Ferromagnetism in Twisted Bilayer Graphene. Phys. Rev. Lett. 2020, 124, 166601. [Google Scholar] [CrossRef]
- Chen, G.; Sharpe, A.L.; Fox, E.J.; Zhang, Y.H.; Wang, S.; Jiang, L.; Lyu, B.; Li, H.; Watanabe, K.; Taniguchi, T.; et al. Tunable correlated Chern insulator and ferromagnetism in a moire superlattice. Nature 2020, 579, 56–61. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Huang, X.; Dai, H.; Wang, M.; Cheng, H.; Tong, L.; Li, Z.; Han, X.; Wang, X.; Ye, L.; et al. Proximity-Coupling-Induced Significant Enhancement of Coercive Field and Curie Temperature in 2D van der Waals Heterostructures. Adv. Mater. 2020, 32, e2002032. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, C.; Liang, S.J.; Ma, Z.; Xu, K.; Liu, X.; Zhang, L.; Admasu, A.S.; Cheong, S.W.; Wang, L.; et al. Strain-Sensitive Magnetization Reversal of a van der Waals Magnet. Adv. Mater. 2020, 32, e2004533. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Q.; Lin, S.; Sang, X.; Need, R.F.; Roldan, M.A.; Cui, W.; Hu, Z.; Jin, Q.; Chen, S.; et al. Strong Ferromagnetism Achieved via Breathing Lattices in Atomically Thin Cobaltites. Adv. Mater. 2021, 33, e2001324. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Han, S.; Lee, Y.; Coak, M.J.; Kim, J.; Hwang, I.; Son, S.; Shin, J.; Lim, M.; Jo, D.; et al. Gigantic Current Control of Coercive Field and Magnetic Memory Based on Nanometer-Thin Ferromagnetic van der Waals Fe3GeTe2. Adv. Mater. 2020, 33, e2004110. [Google Scholar] [CrossRef] [PubMed]
- Salamon, M.B.; Jaime, M. The physics of manganites: Structure and transport. Rev. Mod. Phys. 2001, 73, 583–628. [Google Scholar] [CrossRef]
- Coey, J.; Viret, M.; Von Molnar, S. Mixed-valence manganites. Adv. Phys. 1999, 48, 167–293. [Google Scholar] [CrossRef]
- Solovyev, I.; Hamada, N.; Terakura, K. Crucial role of the lattice distortion in the magnetism of LaMnO3. Phys. Rev. Lett. 1996, 76, 4825. [Google Scholar] [CrossRef]
- Millis, A. Lattice effects in magnetoresistive manganese perovskites. Nature 1998, 392, 147–150. [Google Scholar] [CrossRef]
- Wang, Z.C.; Rogers, J.D.; Yao, X.; Nichols, R.; Atay, K.; Xu, B.; Franklin, J.; Sochnikov, I.; Ryan, P.J.; Haskel, D. Colossal Magnetoresistance without Mixed Valence in a Layered Phosphide Crystal. Adv. Mater. 2021, 33, 2005755. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.; Mishchenko, O.A.; Carvalho, O.A.; Neto, A.C. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439. [Google Scholar] [CrossRef] [Green Version]
- Kośmider, K.; Fernández-Rossier, J. Electronic properties of the MoS2-WS2 heterojunction. Phys. Rev. B Condens. Matter 2013, 87, 075451. [Google Scholar] [CrossRef] [Green Version]
- Hou, Y.; Kim, J.; Wu, R. Magnetizing topological surface states of Bi2Se3 with a CrI3 monolayer. Sci. Adv. 2019, 5, eaaw1874. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Sapkota, D.; Taniguchi, T.; Watanabe, K.; Mandrus, D.; Morpurgo, A.F. Tunneling Spin Valves Based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals Heterostructures. Nano Lett. 2018, 18, 4303–4308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansen, Ø.; Risinggård, V.; Sudbø, A.; Linder, J.; Brataas, A. Current Control of Magnetism in Two-Dimensional Fe3GeTe2. Phys. Rev. Lett. 2019, 122, 217203. [Google Scholar] [CrossRef] [Green Version]
- Jiang, M.; Asahara, H.; Sato, S.; Kanaki, T.; Yamasaki, H.; Ohya, S.; Tanaka, M. Efficient full spin-orbit torque switching in a single layer of a perpendicularly magnetized single-crystalline ferromagnet. Nat. Commun. 2019, 10, 2590. [Google Scholar] [CrossRef] [Green Version]
- Shao, Q.; Yu, G.; Lan, Y.W.; Shi, Y.; Li, M.Y.; Zheng, C.; Zhu, X.; Li, L.J.; Amiri, P.K.; Wang, K.L. Strong Rashba-Edelstein Effect-Induced Spin-Orbit Torques in Monolayer Transition Metal Dichalcogenide/Ferromagnet Bilayers. Nano Lett. 2016, 16, 7514–7520. [Google Scholar] [CrossRef]
- Longo, E.; Locatelli, L.; Belli, M.; Alia, M.; Kumar, A.; Longo, M.; Fanciulli, M.; Mantovan, R. Spin-Charge Conversion in Fe/Au/Sb2Te3 Heterostructures as Probed By Spin Pumping Ferromagnetic Resonance. Adv. Mater. Interfaces 2021, 8, 2101244. [Google Scholar] [CrossRef]
- Gong, S.-J.; Gong, C.; Sun, Y.-Y.; Tong, W.-Y.; Duan, C.-G.; Chu, J.-H.; Zhang, X. Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors. Proc. Natl. Acad. Sci. USA 2018, 115, 8511–8516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Materials | Transition Temperature | Synthesis Technique | Magnetic Orderings | Intrinsic /Extrinsic | Electrical Properties | Characterization Technique |
---|---|---|---|---|---|---|
Cr2Ge2Te6 [16,52,57] | TC = 61 K (Bulk) TC = 30 K (Bilayer, under 0.075 T) | Solid State Reaction/Exfoliation | FM | Intrinsic | Insulator | Superconducting Quantum Interference Device (SQUID), Magneto-optical Kerr effect (MOKE) |
CrSe2 [58] | TC = 65 K (Monolayer) | CVD | FM | Intrinsic | Semiconductor | Physical Property Measurement System (PPMS, Quantum Design), Raman spectroscopy, Refractive Magnetic Circular Dichroism microscopy (RMCD) |
CrTe2 [59,60] | TC = 310 K (Bulk) TC = 300 K (Few layers) TC = 200 K (Monolayer) | CVD MBE | FM | Intrinsic | Semimetal (1T) Semiconductor | Physical Property Measurement System (PPMS, Quantum Design), Vibrating Sample Magnetometer (VSM), Superconducting Quantum Interference Device (SQUID) X-ray Absorption Spectroscopy and Magnetic Circular Dichroism, Angle-Resolved Photoemission Spectroscopy and Scanning Tunneling Microscopy |
Fe3GeTe2 [55,64,65,67] | TC = 230 K (Bulk) TC = 300 K (Flake, under voltage gate) TC = 130 K (Monolayer) | Solid State Reaction /CVT/Exfoliation | FM | Intrinsic | Metal | Superconducting Quantum Interference Device SQUID magnetometer, Magnetic Properties Measurement System (MPMS, Quantum Design), Refractive Magnetic Circular Dichroism Microscopy (RMCD), Angle-Dependent Anomalous Hall Measurements |
Fe5GeTe2 [70] | TC = 310 K (Bulk) TC = 270–300 K (Flake) | CVT/Exfoliation | FM | Intrinsic | Unknown | Physical Property Measurement System (PPMS, Quantum Design), refractive magnetic circular dichroism microscopy (RMCD) |
CrI3 [15] | TC = 61 K (Bulk) TC = 45 K (Monolayer) | CVT/Exfoliation | FM | Intrinsic | Insulator | Magneto-Optical Kerr effect (MOKE), |
CrBr3 [76,77] | TC = 37 K (Bulk) TC = 34 K (Monolayer) | Exfoliation/MBE | FM | Intrinsic | Insulator | Polarization-Resolved Photoluminescence (PL) Spectroscopy |
MnSe2 [80] | TC = 300 K (Monolayer) | MBE | FM | Intrinsic | Metal | Magnetoresistance measurement, Superconducting Quantum Interference Device (SQUID) |
VSe2 [83,84,85,86,87,88,89] | TC = 300 K (Flake) | CVT/CVD/EBM /Exfoliation | FM | Intrinsic | Metal | Superconducting Quantum Interference Device (SQUID) |
MnSn [94] | TC = 54 K (Monolayer) | MBE | FM | Intrinsic | Semiconductor | Superconducting Quantum Interference Device (SQUID) |
FeSe2 [95,96] | TC = 300 K (Bulk) | Hydrothermal Co-Reduction Route /CVD | FM | Intrinsic | Semiconductor | Vibrating Sample Magnetometer (VSM) |
FeTe2 [95] | TC = 300 K (Bulk) | Hydrothermal Co-Reduction Route | FM | Intrinsic | Semiconductor | Vibrating Sample Magnetometer (VSM) |
FeTe [97,98] | TC = 235 K (Multilayer Hexagonal FeTe) TN = 45 K (Multilayer Tetragonal FeTe) | CVD | FM (Hexagonal) AFM (tetragonal) | Intrinsic | Semiconductor | Vibrating Sample Magnetometer (VSM) Superconducting Quantum Interference Device (SQUID) |
MnBi8Te13 [99] | TC = 10.5 K (Bulk) | Self-flux | FM | Intrinsic | Insulator | Physical Property Measurement System (PPMS, Quantum Design), Magnetic Properties Measurement System (MPMS, Quantum Design), Single-crystal neutron diffraction |
α/β-In2Se3 [100,101,102,103,104,105,106,107,108] | Unknown | Solution method /Exfoliation/PVD/PVT | FM | Extrinsic | Semiconductor | Theoretical calculation |
MoS2 [109,110,111,112,113,114,115,116,117,118,119,120,121,122] | TC = 300 K (Few-layer, fluorine adsorption) TC = 300 K (Bulk, under electron irradiation) | CVD/Exfoliation | FM | Extrinsic | Semiconductor | Theoretical calculation/Superconducting Quantum Interference Device (SQUID) |
PtSe2 [123,124,125] | TC ≈ 5 K (~9 nm thick, Defect induced) | TAC process /Exfoliation | FM | Extrinsic | Semiconductor (Monolayer) Semimetal (Bulk) | Theoretical calculation/Hysteretic Magneto-Transport Response |
PdSe2 [126,127,128] | TC = 800 K (Monolayer, under uniaxial stress) | Solid-State Reaction/Exfoliation | FM | Extrinsic | Semimetal | Theoretical calculation |
VTe2 [132,133,134] | Unknown | Solid-State Reaction/Liquid Exfoliation/MBE | FM | Extrinsic | Semimetal | Theoretical calculation |
WS2 [135,136,140,141] | TC = 470 K (Monolayer) | CVD | FM | Extrinsic | Semiconductor | Theoretical calculation |
SnS2 [142,143] | TC = 31 K (Monolayer, Fe-doped) | CVD/CVT/Exfoliation | FM | Extrinsic | Semiconductor | Vibrating Sample Magnetometer (VSM) |
GaSe [144,145,146,147,148,149] | Unknown | vdW Epitaxy/CVT | FM (Hole doped) AFM (Fe doped) | Extrinsic | Semiconductor | Theoretical calculation |
GeSe [150,151,152] | Unknown | Solid-State Reaction Bridgman method | AFM | Intrinsic | Semiconductor | Theoretical calculation Four-Probe method |
FeGa2S4 [156,160] | TN = 160 K (Bulk) | CVT | AFM | Intrinsic | Insulator | Superconducting Quantum Interference Device (SQUID) |
NiGa2S4 [159,160] | TN = 80 K (Bulk) | CVT | AFM | Intrinsic | Insulator | Superconducting Quantum Interference Device (SQUID) |
Fe2Ga2S5 [160] | TN = 130 K (Bulk) | CVT | AFM | Intrinsic | Insulator | Superconducting Quantum Interference Device (SQUID) |
FePS3 [161,166] | TN = 123 K (Bulk) TN = 118 K (Monolayer) | CVT/Exfoliation | AFM | Intrinsic | Semiconductor | Raman spectroscopy |
NiPS3 [162,166] | TN = 155 K (Bulk) | CVT | AFM | Intrinsic | Semiconductor | Raman spectroscopy/Superconducting Quantum Interference Device (SQUID) |
MnPS3 [163,166] | TN = 78 K (Bulk) | CVT | AFM | Intrinsic | Semiconductor | Vibrating Sample Magnetometer (VSM) |
MnBi2Te4 [172,173] | TN = 25 K (Bulk) | Self-fulx | AFM | Intrinsic | Insulator | Superconducting Quantum Interference Device (SQUID) |
MnBi4Te7 [176] | TN = 13 K (Bulk) | Self-fulx | AFM | Intrinsic | Insulator | Magnetic Property Measurement System (MPMS, Quantum Design), Neutron diffraction |
MnBi6Te10 [176] | TN = 11 K (Bulk) | Self-fulx | AFM | Intrinsic | Insulator | Magnetic Property Measurement System (MPMS, Quantum Design), Neutron diffraction |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, W.; Kong, L.; Zhao, W.; Yu, P. Atomically Thin 2D van der Waals Magnetic Materials: Fabrications, Structure, Magnetic Properties and Applications. Coatings 2022, 12, 122. https://doi.org/10.3390/coatings12020122
He W, Kong L, Zhao W, Yu P. Atomically Thin 2D van der Waals Magnetic Materials: Fabrications, Structure, Magnetic Properties and Applications. Coatings. 2022; 12(2):122. https://doi.org/10.3390/coatings12020122
Chicago/Turabian StyleHe, Wei, Lingling Kong, Weina Zhao, and Peng Yu. 2022. "Atomically Thin 2D van der Waals Magnetic Materials: Fabrications, Structure, Magnetic Properties and Applications" Coatings 12, no. 2: 122. https://doi.org/10.3390/coatings12020122
APA StyleHe, W., Kong, L., Zhao, W., & Yu, P. (2022). Atomically Thin 2D van der Waals Magnetic Materials: Fabrications, Structure, Magnetic Properties and Applications. Coatings, 12(2), 122. https://doi.org/10.3390/coatings12020122