Study on the Performance Impact of Introducing an InN Buffer Layer at Various Deposition Temperatures on InN Film Grown by ECR-PEMOCVD on Free-Standing Diamond Substrate
Abstract
:1. Introduction
2. Experimental Methods, Equipment, and Procedures
3. Characterization Analysis of InN Films
3.1. Analysis of Growth Patterns
3.2. Analysis of Grain Size
3.3. Analysis of the Surface Structure Morphology
3.4. Surface Particle Distribution Analysis
3.5. Analysis of Electrical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bechstedt, F.; Furthmuller, J. Do we know the fundamental energy gap of InN? J. Cryst. Growth 2002, 246, 315–319. [Google Scholar] [CrossRef]
- Sharma, V.; Ahuja, B.L. Unusual electronic properties of InN. Phys. Lett. A 2008, 372, 5377–5380. [Google Scholar] [CrossRef]
- Mukundan, S.; Chandan, G.; Mohan, L.; Roul, B.; Krupanidhi, S.B. Structural and optical characterization of nonpolar (10-10) m-InN/m-GaN epilayers grown by PAMBE. J. Cryst. Growth 2016, 433, 74–79. [Google Scholar] [CrossRef]
- Polyakov, V.M.; Schwierz, F. Low-field electron mobility in wurtzite InN. Appl. Phys. Lett. 2006, 88, 032101. [Google Scholar] [CrossRef] [Green Version]
- Pan, W.; Dimakis, E.; Wang, G.T.; Moustakas, T.D.; Tsui, D.C. Two-dimensional electron gas in monolayer InN quantum wells. Appl. Phys. Lett. 2014, 105, 213503. [Google Scholar] [CrossRef] [Green Version]
- Qaeed, M.A.; Ibrahim, K.; Saron, K.M.; Salhin, A. Optical and structural properties of indium nitride nanoparticles synthesized by chemical method at low temperature. Sol. Energy 2013, 97, 614–619. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, Y.T.; Han, X.; Li, P.-C.; Jiang, J.-Y.; Huang, Z.; Yin, J.-Z.; Zhao, D.-G.; Zhang, B.-L.; Du, G.-T. Growth parametric study of N-polar InGaN films by metalorganic chemical vapor deposition. Surperlattices Microstruct. 2016, 91, 259–268. [Google Scholar] [CrossRef]
- Zhao, S.R.; Zetian, M. Recent advances on p-Type III-Nitride Nanowires by molecularbeam epitaxy. Crystals 2017, 7, 268. [Google Scholar] [CrossRef]
- Sarwar, A.T.M.G.; Yang, F.; Esser, B.D.; Kent, T.F.; McComb, D.W.; Myers, R.C. Self-assembled InN micro-mushrooms by upside-down pendeoepitaxy. J. Cryst. Growth 2016, 443, 90–97. [Google Scholar]
- Bi, Z.X.; Zhang, R.; Xie, Z.L.; Xiu, X.; Ye, Y.; Liu, B.; Gu, S.; Shen, B.; Shi, Y.; Zheng, Y. The growth temperature dependence of in aggregation in two-step MOCVD grown InN films on sapphire. Mater. Lett. 2004, 58, 3641–3644. [Google Scholar] [CrossRef]
- Le, B.H.; Zhao, S.R.; Tran, N.H.; Mi, Z. Electrically injected near-infrared light emission from single InN nanowire p-i-n diode. Appl. Phys. Lett. 2014, 105, 231124. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, H.; Zhuang, S.; Wu, G.; Leng, J.; Li, W.; Gao, F.; Zhang, B.; Du, G. Near infrared electroluminescence from n-InN/p-NiO/GaN light-emitting diode fabricated by PAMBE. Opt. Commun. 2016, 371, 128–131. [Google Scholar] [CrossRef]
- Nanishi, Y.; Saito, Y.; Yamaguchi, T. RF-Molecular beam epitaxy growth and properties of inn and related alloys. Jpn. J. Appl. Phys. Part 1 2003, 42, 2549–2559. [Google Scholar] [CrossRef]
- Siekacz, M.; Wolny, P.; Ernst, T.; Grzanka, E.; Staszczak, G.; Suski, T.; Feduniewicz-Żmuda, A.; Sawicka, M.; Moneta, J.; Anikeeva, M.; et al. Impact of the substrate lattice constant on the emission properties of InGaN/GaN short-period superlattices grown by plasma assisted MBE. Superlattices Microstruct. 2019, 133, 106209. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, H.; Wu, G.G.; Jing, Q.; Gao, F.; Li, W.; Zhang, B.; Du, G. Effect of nitridation on structure, electrical and optical properties of InN epilayers grown on sapphire by PAMBE. Vacuum 2015, 111, 15–18. [Google Scholar] [CrossRef]
- Wang, X.Q.; Che, S.B.; Ishitani, Y.; Yoshikawa, A. Hole mobility in Mg doped p-type InN films. Appl. Phys. Lett. 2008, 92, 132108. [Google Scholar] [CrossRef]
- Tsai, C.H. Nanoindention study of indium nitride thin films grown using RF plasma-assisted molecular beam epitaxy. Vacuum 2012, 86, 1328–1332. [Google Scholar] [CrossRef]
- Kumar, M.; Rajpalke, M.K.; Bhat, T.N.; Roul, B.; Sinha, N.; Kalghatgi, A.; Krupanidhi, S. Growth of InN layers on Si(111) using ultra thin silicon nitride buffer layer by NPA-MBE. Mater. Lett. 2011, 65, 1396–1399. [Google Scholar] [CrossRef]
- Amirhoseiny, M.; Hassan, Z.; Ng, S.S. Photoluminescence spectra of nitrogen-rich InN thin films grown on Si(110) and photoelectrochemical etched Si(110). Vacuum 2014, 101, 217–220. [Google Scholar] [CrossRef]
- Liu, W.F.; Luo, Y.L.; Sang, Y.C.; Bian, J.; Zhao, Y.; Liu, Y.; Qin, F. Adjusted surface work function of InN films annealed at vacuum and at high-pressure N2 conditions. Mater. Lett. 2013, 95, 135–138. [Google Scholar] [CrossRef]
- Terziyska, P.T.; Butcher KS, A.; Gogova, D.; Alexandrov, D.; Binsted, P.; Wu, G. InN nanopillars grown from In-rich conditions by migration enhanced afterglow technique. Mater. Lett. 2013, 106, 155–157. [Google Scholar] [CrossRef]
- Xu, Y.; Gu, B.; Qin, F.W. Electron cyclotron resonance plasma enhanced metalorganic chemical vapor deposition system with monitoring in situ for epitaxial growth of group-III nitrides. J. Vac. Sci. Technol. A 2004, 22, 302–308. [Google Scholar] [CrossRef]
- Gu, B.; Xu, Y.; Qin, F.W. ECR plasma in growth of c-GaN by low pressure MOCVD. Plasma Chem. Plasma Process. 2002, 22, 159–174. [Google Scholar] [CrossRef]
- Zhang, D.; Bai, Y.Z.; Qin, F.W.; Bian, J.-M.; Jia, F.-C.; Wu, Z.-L.; Zhao, J.-J.; Jiang, X. Preparation and characteristics of GaN films on freestanding CVD thick diamond films. Chin. Phys. Lett. 2010, 27, 018102. [Google Scholar]
- Zhang, D.; Bai, Y.Z.; Qin, F.W.; Jia, F.; Wang, J.; Bian, J. Deposition and properties of highly c-oriented GAN films on diamond substrates. Appl. Phys. A Mater. Sci. Process. 2011, 102, 353–358. [Google Scholar] [CrossRef]
- Wang, S.J.; Qin, F.W.; Bai, Y.Z.; Zhang, D.; Zhang, J. Impact of the deposition temperature on the structural and electrical properties of inn films grown on self-standing diamond substrates by low-temperature ECR-MOCVD. Coatings 2020, 10, 1185. [Google Scholar] [CrossRef]
- Wang, S.J.; Qin, F.W.; Bai, Y.Z.; Zhang, D. Study on Preparation and Properties of InN films on self-supporting diamond substrates under different nitrogen flows. Front. Mater. 2020, 7, 154. [Google Scholar] [CrossRef]
- Sato, Y.; Saito, S.; Shiraishi, K.; Taniguchi, S.; Izuka, Y.; Saito, T. Vertical alignment of InN- and GaN-based nanopillar crystals grown on a multicrystalline Si substrate. J. Cryst. Growth 2020, 537, 125603. [Google Scholar] [CrossRef]
- Xie, W.M.; Xie, Q.Y.; Wang, K.; Tao, P.; Zhang, F.; Wu, X. Transport properties for Zn+ ion implanted InN films at low temperature. Mater. Lett. 2017, 208, 23–26. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Y.; Li, X.Z.; Zhen, Z.; Li, Q.; Li, H.; Wang, J.; Tang, M. Dominant near infrared light-emitting diodes based onp-NiO/n-InNheterostructure on SiCsubstrate. J. Alloys Compd. 2018, 735, 1402–1405. [Google Scholar] [CrossRef]
- Bagavath, C.; Nasi, L.; Kumar, J. Investigations on the structural and optical properties of sphere-shaped indium nitride(InN). Appl. Phys. A Mater. Sci. Process. 2017, 123, 287. [Google Scholar] [CrossRef]
- Yin, H.J.; Qian, Y.P.; Xie, L.Y.; Song, C.; Wang, X.; Chen, H.; Wang, P.; Zhou, G.; Nötzel, R. Electrocatalytic activity of InN/InGaN quantum dots. Electrochem. Commun. 2019, 106, 106514. [Google Scholar] [CrossRef]
- Liu, J.T.; Liu, H.; Zhang, A.; Wang, J.; Tang, G.; Zhang, J.; Bai, D. Strain dependent electronic structure and optical properties tuning of InN/PtX2(X = S, Se) van der waals heterostructures. Vacuum 2019, 168, 108805. [Google Scholar] [CrossRef]
- Jimenez, J.J.; Manuel, J.M.; Aseev, P.; Rodriguez, P.S.; Nötzel, R.; Gačević, Ž.; Calleja, E.; García, R.; Morales, F. (S)TEM methods contributions to improve the fabrication of InGaN thin films on Si, and InN nanostructures on flat Si and rough InGaN. J. Alloys Compd. 2019, 783, 697–708. [Google Scholar] [CrossRef]
- Xu, D.Q.; Lou, Y.L.; Zhang, Y.; Li, Y.; Li, P. Control of magnetic properties in Fe doped and (Fe, Ni) codopedInN by nonmagnetic substitution. Solid State Commun. 2020, 322, 114091. [Google Scholar] [CrossRef]
- Zhang, J.K.; Ma, Y.Z.; Sun, M.L.; Yin, G.; Yang, J. Structural and electrical properties of InN hollow nanotubes under high pressure. Mater. Lett. 2018, 213, 306–310. [Google Scholar] [CrossRef]
- Eric, D.; Jiang, J.L.; Imran, A.; Zahid, M.N.; Khan, A. Optical properties of InN/GaN quantum dot superlattice by changing dot size and interdot spacing. Res. Phys. 2019, 13, 102246. [Google Scholar] [CrossRef]
Samples | Procedure | Deposition Temperature (°C) | N2 Flow Rate (sccm) | TMIn Flow Rate (sccm) | H2 Flow Rate (sccm) | Microwave Power (W) |
---|---|---|---|---|---|---|
1 | Clean | 25 | 0 | 0 | 60 | 650 |
No buffer layer | / | / | / | / | / | |
InN film | 400 | 80 | 0.6 | 0 | 650 | |
2 | Clean | 25 | 0 | 0 | 60 | 650 |
Buffer layer | room temperature | 60 | 0.3 | 0 | 650 | |
InN film | 400 | 80 | 0.6 | 0 | 650 | |
3 | Clean | 25 | 0 | 0 | 60 | 650 |
Buffer layer | 100 | 60 | 0.3 | 0 | 650 | |
InN film | 400 | 80 | 0.6 | 0 | 650 | |
4 | Clean | 25 | 0 | 0 | 60 | 650 |
Buffer layer | 200 | 60 | 0.3 | 0 | 650 | |
InN film | 400 | 80 | 0.6 | 0 | 650 |
Samples | Deposition Temperature of Buffer Layer (°C) | 2θ (°) | FWHM (°) | Grain Size (nm) | c-Axis Lattice Constant (nm) | Stress (GPa) |
---|---|---|---|---|---|---|
a | Without buffer layer | 31.23 | 0.28 | 31 | 0.5731 | 0.78 |
b | With buffer layer, room temperature | 31.27 | 0.21 | 43 | 0.5714 | 2.00 |
c | With buffer layer, 100 °C | 31.31 | 0.17 | 51 | 0.5708 | 2.88 |
d | With buffer layer, 200 °C | 31.28 | 0.24 | 44 | 0.5728 | 1.28 |
Samples | Deposition Temperature of Buffer Layer (°C) | Carrier Mobility (cm2/V·s) | Carrier Concentration (cm−3) | Conductivity (S·cm−1) |
---|---|---|---|---|
a | Without buffer layer | 20.4 | 2.0 × 1020 | 652.8 |
b | With buffer layer, room temperature | 48.5 | 9.2 × 1019 | 713.9 |
c | With buffer layer, 100 °C | 185.0 | 4.3 × 1018 | 127.3 |
d | With buffer layer, 200 °C | 90.3 | 9.4 × 1018 | 135.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Guan, X.; Liu, S.; Zhang, D. Study on the Performance Impact of Introducing an InN Buffer Layer at Various Deposition Temperatures on InN Film Grown by ECR-PEMOCVD on Free-Standing Diamond Substrate. Coatings 2022, 12, 147. https://doi.org/10.3390/coatings12020147
Wang S, Guan X, Liu S, Zhang D. Study on the Performance Impact of Introducing an InN Buffer Layer at Various Deposition Temperatures on InN Film Grown by ECR-PEMOCVD on Free-Standing Diamond Substrate. Coatings. 2022; 12(2):147. https://doi.org/10.3390/coatings12020147
Chicago/Turabian StyleWang, Shuaijie, Xin Guan, Shu Liu, and Dong Zhang. 2022. "Study on the Performance Impact of Introducing an InN Buffer Layer at Various Deposition Temperatures on InN Film Grown by ECR-PEMOCVD on Free-Standing Diamond Substrate" Coatings 12, no. 2: 147. https://doi.org/10.3390/coatings12020147
APA StyleWang, S., Guan, X., Liu, S., & Zhang, D. (2022). Study on the Performance Impact of Introducing an InN Buffer Layer at Various Deposition Temperatures on InN Film Grown by ECR-PEMOCVD on Free-Standing Diamond Substrate. Coatings, 12(2), 147. https://doi.org/10.3390/coatings12020147