Mechanical Properties of Multi-Sized Porous Thermal Barrier Coatings at Micro and Nano Scales after Long-Term Service at High Temperature
Abstract
:1. Introduction
2. Experimental Materials and Procedures
2.1. Feedstocks and Coating Preparation
2.2. High-Temperature Long-Term Service
2.3. Microstructures and Phases
2.4. Properties
- P—the maximum indentation load (N);
- C—the crack length (m);
- α—a coefficient related to the shape of the indenter (considered to be 0.016 [41]);
- E—the modulus (GPa);
- H—the hardness (GPa).
3. Results
3.1. Microstructure of the Deposited Porous TBCs
3.2. Phases
3.3. Mechanical Properties of the Multi-Sized Porous TBCs
4. Discussion
4.1. The Influence Mechanism of Pore Evolution on Hardness and Elastic Modulus
4.2. The Influence Mechanism of Pore Evolution on Fracture Toughness
5. Conclusions
- The introduction of the multi-sized pores into TBCs could bring out the decrease of the hardness and modulus as well as the increase of the fracture toughness.
- With the serving time’s extension at 1100 °C, the elastic modulus and hardness of the multi-sized porous TBCs increased, and the fracture toughness decreased.
- When the serving time reached 60 days, the small nano-sized pores disappeared, and the large micron-sized pores were retained with good anti-sintering properties. The porous structure, hardness, elastic modulus and fracture toughness tended to be stable.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clarke, D.R.; Oechsner, M.; Padture, N.P. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull. 2012, 37, 891–898. [Google Scholar] [CrossRef] [Green Version]
- Thakare, J.G.; Pandey, C.; Mahapatra, M.M.; Mulik, R.S. Thermal Barrier Coatings—A State of the Art Review. Met. Mater. Int. 2021, 27, 1947–1968. [Google Scholar] [CrossRef]
- Clarke, D.R.; Levi, C.G. Materials Design for the Next Generation Thermal Barrier Coatings. Annu. Rev. Mater. 2003, 33, 383–417. [Google Scholar] [CrossRef]
- Padture, N.P. Advanced structural ceramics in aerospace propulsion. Nat. Mater. 2016, 15, 804–809. [Google Scholar] [CrossRef] [PubMed]
- Arunkumar, T.; Navneet, S.; Premnath, S.; Alan, S.; Ajith, J. A study of mechanical and corrosion behaviour of 8YSZ coating on AZ91D alloy. Mater. Today Proc. 2021, 47, 4322–4325. [Google Scholar]
- Carpio, P.; Salvador, M.D.; Benavente, R.; Miranda, M.; Borrell, A.; Sánchez, E. Impact of feedstock nature on thermal conductivity of YSZ thermal barrier coatings obtained by plasma spraying. J. Ceram. Sci. Technol. 2016, 7, 307–312. [Google Scholar]
- Jiang, K.; Liu, S.; Wang, X. Phase stability and thermal conductivity of nanostructured tetragonal yttria–stabilized zirconia thermal barrier coatings deposited by air–plasma spraying. Ceram. Int. 2017, 43, 12633–12640. [Google Scholar] [CrossRef]
- Atin, S.; Gregoire, W.; Philip, C.H.; Neil, H. Interplay of the phase and the chemical composition of the powder feedstock on the properties of porous 8YSZ thermal barrier coatings. J. Eur. Ceram. 2021, 41, 3706–3716. [Google Scholar]
- Yang, D.M.; Gao, Y.; Liu, H.J.; Sun, C.Q. Thermal shock resistance of bimodal structured thermal barrier coatings by atmospheric plasma spraying using nanostructured partially stabilized zirconia. Surf. Coat. Technol. 2017, 315, 9–16. [Google Scholar] [CrossRef]
- Nath, S.; Manna, I.; Majumdar, J.D. Nanomechanical behavior of yttria stabilized zirconia (YSZ) based thermal barrier coating. Ceram. Int. 2015, 41, 5247–5256. [Google Scholar] [CrossRef]
- Tailor, S.; Singh, M.; Doub, A.V. Synthesis and characterization of yttria-stabilized zirconia (YSZ) nano—Clusters for thermal barrier coatings (TBCs) applications. J. Clust. Sci. 2016, 27, 1097–1107. [Google Scholar] [CrossRef]
- Gao, P.H.; Zeng, S.C.; Jin, C.; Zhang, B.; Chen, B.Y.; Yang, Z.; Guo, Y.C.; Liang, M.X.; Li, J.P.; Li, Q.P.; et al. Effect of Gd2O3 Addition on the Microstructure and Properties of Gd2O3-Yb2O3-Y2O3-ZrO2 (GYYZO) Ceramics. Materials 2021, 14, 7470. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Deng, C.M.; Niu, S.P.; Wang, C.; Sun, Y.N.; Su, W.M.; Liu, M.; Deng, Z.Q.; Zhang, X.F. Effect of calcination temperature on the microstructure, composition and properties of nanometer agglomerated 8YSZ powders for plasma spray-physical vapor deposition (PS-PVD) and coatings thereof. Ceram. Int. 2021, 47, 16632–16640. [Google Scholar] [CrossRef]
- Gao, P.H.; Jia, H.; Wang, W.; Chen, B.Y.; Guo, Y.C.; Yang, Z.; Wang, J.D. Research progress in characterization of pore structure of thermal spray coatings. Rare Met. Mater. Eng. 2019, 48, 3055–3070. [Google Scholar]
- Gao, P.-H.; Yang, G.-J.; Cao, S.-T.; Li, J.-P.; Yang, Z.; Guo, Y.-C. Heredity and variation of hollow structure from powders to coatings through atmospheric plasma spraying. Surf. Coat. Technol. 2016, 305, 76–82. [Google Scholar] [CrossRef]
- Gao, P.H.; Zeng, S.C.; Jin, C.; Zhang, B.; Chen, B.Y.; Yang, Z.; Guo, Y.C.; Liang, M.X.; Li, J.P.; Li, Q.P.; et al. Thermal conductivity of multi-sized porous thermal barrier coatings at micro and nano scales after long-term service at high temperature. Coatings 2021, 11, 1183. [Google Scholar] [CrossRef]
- Tatsuo, S.; Hiroya, O.; Masayuki, A. A novel low-thermal-conductivity plasma sprayed thermal barrier coating controlled by large pores. Surf. Coat. Technol. 2016, 285, 120–127. [Google Scholar]
- Zhao, Y.L.; Wang, Y.; Peyraut, F.; Liao, H.L.; Montavon, G.; Planche, M.P.; Ilavsky, J.; Lasalle, A.; Allimant, A. Evaluation of nano/submicro pores in suspension plasma sprayed YSZ coatings. Surf. Coat. Technol. 2019, 378, 125001. [Google Scholar] [CrossRef]
- Ekberg, J.; Nordstierna, L.; Klement, U. Porosity investigation of yttria-stabilized zirconia topcoats using NMR cryoporometry. Surf. Coat. Technol. 2017, 315, 468–474. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Wen, J.H.; Peyraut, F.; Planche, M.P.; Misra, S.; Lenoir, B.; Ilavsky, J.; Liao, H.L.; Montavon, G. Porous architecture and thermal properties of thermal barrier coatings deposited by suspension plasma spray. Surf. Coat. Technol. 2020, 386, 125462. [Google Scholar] [CrossRef]
- Zhou, F.F.; Liu, M.; Wang, Y.M.; Wang, Y.; Deng, C.M. Depth-Sensing Indentation Creep Behavior of Nanostructured Thermal Barrier Coatings from As-Synthesized t’-8YSZ Feedstocks. Nanomaterials 2019, 10, 38. [Google Scholar] [CrossRef] [Green Version]
- Daniel, T.M.; Bai, M.W.; Jitendra, M.; Tanvir, H. Evolution of porosity in suspension thermal sprayed YSZ thermal barrier coatings through neutron scattering and image analysis techniques. J. Eur. Ceram. 2021, 41, 6035–6048. [Google Scholar]
- Yin, J.N.; Zhang, X.; Feng, J.L.; Zhang, X.F.; Song, J.B.; Liu, M.; Zeng, D.C.; Mao, J.; Deng, C.M.; Deng, C.G.; et al. Effect of powder composition upon plasma spray-physical vapor deposition of 8YSZ columnar coating. Ceram. Int. 2020, 46, 15867–15875. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Yang, Q.L.; Chen, L.; Song, P.; Feng, J. Fabrication and characterization of 8YSZ ceramic based abradable seal coatings by atmospheric plasma spraying. Ceram. Int. 2020, 46, 26530–26538. [Google Scholar] [CrossRef]
- Sivakumar, S.; Praveen, K.; Shanmugavelayutham, G.; Yugeswaran, S.; Mostaghimi, J. Thermo-physical behavior of atmospheric plasma sprayed high porosity Lanthanum Zirconate coatings. Surf. Coat. Technol. 2017, 326, 173–182. [Google Scholar] [CrossRef]
- Cernuschi, F.; Golosnoy, I.; Bison, P.; Moscatelli, A.; Vassen, R.; Bossmann, H.-P.; Capelli, S. Microstructural characterization of porous thermal barrier coatings by IR gas porosimetry and sintering forecasts. Acta Mater. 2013, 61, 248–262. [Google Scholar] [CrossRef]
- Cui, S.Y.; Lian, W.P.; Mora, L.S.; Miao, Q.; Domblesky, J.P.; Lin, H.; Yu, L.J. Mechanical analysis and modeling of porous thermal barrier coatings. Appl. Surf. Sci. 2020, 512, 145706. [Google Scholar] [CrossRef]
- Ruiji, Z.; Xing, Z.; Chen, X.; Li, H.; Fangwei, G.; Xin, W.; Xiaofeng, Z. Preparation of long-lifetime thermal barrier coatings and toughening mechanism by using hierarchy structured zirconia-based microspheres. J. Eur. Ceram. Soc. 2021, 41, 4625–4636. [Google Scholar]
- Zhou, F.F.; Deng, C.M.; Wang, Y.; Liu, M.; Wang, L.; Wang, Y.M.; Zhang, X.F. Characterization of multi-scale synergistic toughened nanostructured YSZ thermal barrier coatings: From feedstocks to coatings. J. Eur. Ceram. 2020, 40, 1443–1452. [Google Scholar] [CrossRef]
- Jiang, J.S.; Wang, W.Z.; Zhao, X.Y.; Liu, Y.Z.; Cao, Z.M.; Xiao, P. Numerical analyses of the residual stress and top coat cracking behavior in thermal barrier coatings under cyclic thermal loading. Eng. Fract. Mech. 2018, 196, 191–205. [Google Scholar] [CrossRef]
- Meyer, M.; Lupoi, R. An analysis of the particulate flow in cold spray nozzles. Mech. Sci. 2015, 6, 127–136. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, Z.H.; Li, X.B.; Huang, G.S.; Li, C.X.; Li, Y. Corrosion behavior of low pressure cold sprayed Zn-Ni composite coatings. J. Alloys Compd. 2017, 719, 194–202. [Google Scholar] [CrossRef]
- Walker, M. Microstructure and bonding mechanisms in cold spray coatings. Mater. Sci. Technol. 2018, 34, 2057–2077. [Google Scholar] [CrossRef]
- Li, S.; An, Y.; Zhou, H.; Chen, J. Plasma sprayed YSZ coatings deposited at diferent deposition temperatures, part 1: Splats, microstructures, mechanical properties and residual stress. Surf. Coat. Technol. 2018, 350, 712–721. [Google Scholar] [CrossRef]
- Rokni, M.R.; Nutt, S.R.; Widener, C.A.; Champagne, V.K.; Hrabe, R.H. Review of relationship between particle deformation, coating microstructure, and properties in high-pressure cold spray. J. Therm. Spray Technol. 2017, 26, 1308–1355. [Google Scholar] [CrossRef]
- Thakare, J.G.; Mulik, R.S.; Mahapatra, M.M.; Upadhyaya, R. Hot corrosion behavior of plasma sprayed 8YSZ-alumina-CNT composite coating in Na2SO4-60% V2O5 molten salt environment. Ceram. Int. 2018, 44, 21533–21545. [Google Scholar] [CrossRef]
- Marple, B.R.; Voyer, J.; Thibodeau, M.; Nagy, D.R. Hot corrosion of lanthanum zirconate and partially stabilized zirconia thermal barrier coatings. J. Eng. Gas Turbines Power 2019, 128, 144–152. [Google Scholar] [CrossRef] [Green Version]
- Ganvir, A.; Curry, N.; Markocsan, N.; Nylén, P.; Joshi, S.; Vilemova, M.; Pala, Z. Influence of microstructure on thermal properties of axial suspension plasma-sprayed YSZ thermal barrier coatings. J. Therm. Spray Technol. 2016, 25, 202–212. [Google Scholar] [CrossRef]
- Foroushani, H.; Shamanian, M.; Salehi, M.; Davar, F. Porosity analysis and oxidation behavior of plasma sprayed YSZ and YSZ/LaPO4 abradable thermal barrier coatings. Ceram. Int. 2016, 42, 15868–15875. [Google Scholar] [CrossRef]
- Doleker, K.M.; Karaoglanli, A.C. Comparison of oxidation behavior of YSZ and Gd2Zr2O7 thermal barrier coatings (TBCs). Surf. Coat. Technol. 2017, 318, 198–207. [Google Scholar] [CrossRef]
- Shang, F.L.; Zhang, X.; Guo, X.C.; Zhao, P.F.; Chang, Y. Determination of high temperature mechanical properties of thermal barrier coatings by nanoindentation. Surf. Eng. 2014, 30, 283–289. [Google Scholar] [CrossRef]
- Taylor, R.; Brandon, J.R.; Morrell, P. Microstructure, composition and property relationships of plasma-sprayed thermal barrier coatings. Surf. Coat. Technol. 1992, 50, 141–149. [Google Scholar] [CrossRef]
- Thakare, J.G.; Pandey, C.; Mulik, R.S.; Mahapatra, M.M. Mechanical property evaluation of carbon nanotubes reinforced plasma sprayed YSZ-alumina composite coating. Ceram. Int. 2018, 44, 6980–6989. [Google Scholar] [CrossRef]
- Keyvani, A.; Saremi, M.; Heydarzadeh, S.M. An investigation on oxidation, hot corrosion and mechanical properties of plasma-sprayed conventional and nanostructured YSZ coatings. Surf. Coat. Technol. 2011, 206, 208–216. [Google Scholar] [CrossRef]
Coating | Parameters | |
---|---|---|
Bond Coat | Arc voltage (V) | 67 |
Arc current (A) | 540 | |
H2 pressure (MPa) | 0.3 | |
H2 flow (SLPM) | 2.7 | |
Ar pressure (MPa) | 0.9 | |
Ar flow (SLPM) | 38.1 | |
Powder feeding rate (rad/min) | 3.5 | |
Top Coat | Arc voltage (V) | 70 |
Arc current (A) | 600 | |
H2 pressure (MPa) | 0.3 | |
H2 flow (SLPM) | 3.4 | |
Ar pressure (MPa) | 0.9 | |
Ar flow (SLPM) | 36.5 | |
Powder feeding rate (rad/min) | 3.7 |
Time (Days) | TBCs with 0% Pore Formers | TBCs with 10% Pore Formers | TBCs with 15% Pore Formers |
---|---|---|---|
0 | 6.440 ± 0.010% | 15.524 ± 0.021% | 22.250 ± 0.020% |
1 | 6.356 ± 0.015% | 15.433 ± 0.015% | 22.037 ± 0.023% |
10 | 6.113 ± 0.006% | 15.174 ± 0.013% | 21.871 ± 0.017% |
20 | 5.966 ± 0.012% | 14.888 ± 0.016% | 21.582 ± 0.013% |
30 | 5.706 ± 0.014% | 14.612 ± 0.019% | 21.364 ± 0.016% |
60 | 5.572 ± 0.008% | 14.486 ± 0.024% | 21.143 ± 0.027% |
90 | 5.564 ± 0.011% | 14.467 ± 0.015% | 21.138 ± 0.026% |
Time (Days) | TBCs with 0% Pore Former | TBCs with 10% Pore Former | TBCs with 15% Pore Former |
---|---|---|---|
0 | 1.162 ± 0.005 | 1.231 ± 0.008 | 1.353 ± 0.017 |
1 | 1.148 ± 0.002 | 1.217 ± 0.005 | 1.325 ± 0.014 |
10 | 1.135 ± 0.011 | 1.206 ± 0.006 | 1.297 ± 0.009 |
20 | 1.124 ± 0.004 | 1.192 ± 0.017 | 1.288 ± 0.005 |
30 | 1.093 ± 0.009 | 1.176 ± 0.015 | 1.276 ± 0.006 |
60 | 1.049 ± 0.012 | 1.157 ± 0.003 | 1.255 ± 0.012 |
90 | 1.046 ± 0.013 | 1.155 ± 0.003 | 1.252 ± 0.011 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, P.; Zeng, S.; Jin, C.; Zhang, B.; Chen, B.; Yang, Z.; Guo, Y.; Liang, M.; Li, J.; Wang, W.; et al. Mechanical Properties of Multi-Sized Porous Thermal Barrier Coatings at Micro and Nano Scales after Long-Term Service at High Temperature. Coatings 2022, 12, 165. https://doi.org/10.3390/coatings12020165
Gao P, Zeng S, Jin C, Zhang B, Chen B, Yang Z, Guo Y, Liang M, Li J, Wang W, et al. Mechanical Properties of Multi-Sized Porous Thermal Barrier Coatings at Micro and Nano Scales after Long-Term Service at High Temperature. Coatings. 2022; 12(2):165. https://doi.org/10.3390/coatings12020165
Chicago/Turabian StyleGao, Peihu, Shengcong Zeng, Can Jin, Bo Zhang, Baiyang Chen, Zhong Yang, Yongchun Guo, Minxian Liang, Jianping Li, Wei Wang, and et al. 2022. "Mechanical Properties of Multi-Sized Porous Thermal Barrier Coatings at Micro and Nano Scales after Long-Term Service at High Temperature" Coatings 12, no. 2: 165. https://doi.org/10.3390/coatings12020165
APA StyleGao, P., Zeng, S., Jin, C., Zhang, B., Chen, B., Yang, Z., Guo, Y., Liang, M., Li, J., Wang, W., Lu, Y., Jia, L., & Zhao, D. (2022). Mechanical Properties of Multi-Sized Porous Thermal Barrier Coatings at Micro and Nano Scales after Long-Term Service at High Temperature. Coatings, 12(2), 165. https://doi.org/10.3390/coatings12020165