Comparative Study on Road Performance of Low-Grade Hard Asphalt and Mixture in China and France
Abstract
:1. Introduction
2. Materials and Experimental
2.1. Materials
2.2. Mix Design
2.3. Test Methods
2.3.1. Asphalt Binder Performance Test
- High-temperature rheological properties test
- 2.
- Low-temperature rheological properties test
- 3.
- Pneumatic rheological rebound test
2.3.2. High Modulus Asphalt Mixture Performance Test
3. Performance Evaluation of Asphalt Binder
3.1. Penetration, Softening Point, Dynamic Viscosity and Residual Penetration
3.2. High-Temperature Rheological Properties of Asphalt Binder
3.3. Low-Temperature Rheological Properties of Asphalt Binder
3.4. Pneumatic Rheological Rebound Performance
4. Analysis and Evaluation of High Modulus Asphalt Mixture Performance
4.1. Porosity Verification and Water Sensitivity Evaluation
4.2. High-Temperature Performanc
4.3. Low-Temperature Performance
4.4. Stiffness Modulus
4.5. Fatigue Life
5. Conclusions
- The performance indicators of the China 15# hard asphalt meet the requirements of the binder used in the high modulus asphalt mixture. China 15# and France 15# hard bitumen are similar in performance but slightly different. The French low-grade hard asphalt showed better high-temperature stability and less sensitivity to changes in the level of change, while the Chinese low-grade hard asphalt had better anti-aging performance and viscoelastic properties.
- The high and low-temperature performance, water stability, stiffness modulus and fatigue life of the high-modulus asphalt mixture based on China 15# hard asphalt all meet the specification requirements, indicating that the application of the high modulus asphalt mixture of Chinese low-grade hard bitumen can be carried out in China.
- The road performance of the Chinese and French 15# hard asphalt mixtures is similar but slightly different. Chinese low-grade hard asphalt mixtures showed better high-temperature performance and fatigue performance. The French 15# hard asphalt mixture was less sensitive to changes in load times and strain levels and performed better at low temperature, which can increase the low-temperature performance by about 10%. There is not much difference in water stability and stiffness modulus for the two low-grade hard asphalts mixtures.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- NF P98-141; Asphalt Mixture-Wearing Course and Base Course: High Modulus Asphalt Mixture-Definition-Classification-Characteristics-Production and Construction. French Standardization Association: Paris, France, 1999.
- Xia, X.P.; Zhang, R.N.; Fu, H.W. Characteristics and new development of high modulus asphalt mixture. Chin. For. Highw. 2005, 2, 123–127. [Google Scholar]
- Serfass, P.; Bense, P.; Pellevoisin, P. Properties and New Developments of High Modulus Asphalt Concrete. In Proceedings of the Lecture Series 8th International Conference on Asphalt Pavements, Seattle, WA, USA, 10–14 August 1997. [Google Scholar]
- Jean, F.C. Development and Uses of Hard-Grade Asphalt and of High-Modulus Asphalt Mixes in France; Transportation Research Board: Washington, DC, USA, 2001; pp. 12–31. [Google Scholar]
- Zhou, Q.H.; Sha, A.M.; Yang, Q. Experimental study on mechanical properties of high modulus asphalt concrete. J. Zhengzhou Univ. 2008, 3, 128–131. [Google Scholar]
- Witczak, M. Simple Performance Tests: Summary of Recommended Methods and Database; NCHRP-547; Transportation Research Board: Washington, DC, USA, 2005; pp. 2–7. [Google Scholar]
- Montanelli, E.F. Fiber/Polymeric Compound for High Modulus Polymer Modified Asphalt (PMA). Procedia-Soc. Behav. Sci. 2013, 104, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Gottam, S.R.; Adepu, R.; Vijayapuri, V.R.; Ramu, P. Laboratory evaluation of hard grade bitumen produced with PPA addition. Int. J. Pavement Res. Technol. 2020, 14, 505–512. [Google Scholar]
- Maupin, G.W.; Diefenderfer, B.K. Design of a High-Binder-High-Modulus Asphalt Mixture. Virginia Transportation Research Council: Charlottesville, VA, USA, 2006; pp. 1–30. [Google Scholar]
- Silvino, D.C.; Luis, P.S. Assessing permanent deformation resistance of high modulus asphalt mixtures. J. Transp. Eng. 2006, 132, 394–401. [Google Scholar]
- Didier, D.; Philippe, G.; Patrice, O. Comparative experiment for PMB and hard bitumen on a thin anti rutting maintenance treatment. In Proceedings of the Vienna: 3rd Eurasphalt & Eurobitume Congress, Vienna, Australia, 12–14 May 2004. [Google Scholar]
- Serfass, J.P.; Bauduin, A.; Garnier, J.F. High modulus asphalt mixes laboratory evaluation, practical aspects and structural design. In Proceedings of the 7th International Conference on Asphalt Pavements, Nottingham, UK, 16–20 August 1992; Volume 1, pp. 275–288. [Google Scholar]
- Lee, H.J.; Lee, J.H.; Park, H.M. Performance evaluation of high modulus asphalt mixtures for long life asphalt pavements. Constr. Build. Mater. 2007, 21, 1079–1087. [Google Scholar]
- Yang, J. Study on low temperature performance of gussasphalt on steel decks with hard bitumen. J. Southeast Univ. 2003, 19, 160–164. [Google Scholar]
- Corte, J.F. Development and uses of hard grade asphalt and of high modulus asphalt mixes in France. Transp. Res. Circ. 2003, 503, 12–31. [Google Scholar]
- Newcomb, D.E.; Buncher, M.; Huddleston, I.J. Concepts of Perpetual Pavements; Transportation Research Board: Washington, DC, USA, 2001; pp. 4–11. [Google Scholar]
- Claude, B.; Joëlle, V.; Lieve, G.; Ann, V.; Stefan, V.; Lucien, H. A Comparative High-modulus Asphalt Experiment in Belgium. Transp. Res. Arena Eur. 2008, 32, 22–38. [Google Scholar]
- De Visscher, J.; Vansteenkiste, S.; Vanelstraete, A. Test sections in high-modulus asphalt: Mix design and laboratory performance testing. In Proceedings of the 4th Eurasphalt and Eurpbitume Congress, Copenhagen, Denmark, 21–23 May 2008; pp. 1–11. [Google Scholar]
- De Backer, C.; Glorie, L.; Reynaert, R. Test sections in high-modulus asphalt:a comparative experiment with ten variants. In Proceedings of the 4th Eurasphalt and Eurpbitume Congress, Copenhagen, Denmark, 21–23 May 2008; pp. 1–11. [Google Scholar]
- Rohde, L.; Ceratti, J.A.P.; Nunez, W.P.; Vitorello, T. Using APT and laboratory testing to evaluate the performance of high modulus asphalt concrete for base courses in Brazil. In Proceedings of the Third International Conference Centro de Estudios y Experimentación de Obras Públicas (CEDEX) Transportation Research Board, Madrid, Spain, 1–3 October 2008. [Google Scholar]
- Guo, Q.; Tan, J. Application of High Modulus Asphalt Concrete in Pavement Rutting Treatment. J. Highw. Transp. Res. Dev. 2006, 7, 59–62. [Google Scholar]
- Han, C. Design and Application Research of Durable High Modulus Asphalt Mixture Based on Hard Asphalt. Master’s Thesis, Southeast University, Nanjing, China, 2018. [Google Scholar]
- Dong, Y.; Tan, Y. Research on high temperature performance of hard grade asphalt based on repeated shear creep test. High 2015, 2, 160–164. [Google Scholar]
- Liang, C.; Liu, F. Research on properties of 30# hard asphalt and asphalt mixture. J. China Foreign Highw. 2006, 6, 185–188. [Google Scholar]
- Xiong, W. Experimental study on road performance of low-grade asphalt mixture. Highw. Automot. Appl. 2008, 1, 80–82. [Google Scholar]
- Zhao, L.; Han, C.; Zheng, G.; An, F.; Dong, S. Application of Domestic Hard Asphalt in Rutting Treatment Project of Trunk Highway. Shanghai Highw. 2019, 4, 6–8+64+3. [Google Scholar]
- JTG F40-2004; Technical Specifications for Construction of Highway Asphalt Pavements. People’s Communications Press: Beijing, China, 2005.
- BS EN 13924; Bitumen and Bituminous Binders-Specifications for Hard Paving Grade Bitumens. British standard: London, UK, 2006.
- Corté, J.-F.; Serfass, J.-P. The French approach to asphalt mixtures design: A performance-related system of specifications. Assoc. Asph. Paving Technol. 2000, 69, 794–834. [Google Scholar]
- JTG E20-2011; Standard Test Methods of Bitumen and Bitumen Mixtures for Highway Engineering. People’s Communications Press: Beijing, China, 2011.
- France, R.S.T.; “Asphalt Mixture Design” Working Group. LPC Bituminous Mixtures Design Guide; Laboratoire Central des Ponts et Chaussées: Paris, France, 2010. [Google Scholar]
- CSN EN 12697-31; Bituminous Mixtures-Test Methods for Hot Mix Asphalt-Part 31: Specimen Preparation by Gyratory Compactor. The Commonwealth Standards Network: London, UK, 2007.
- CSN EN 12697-12; Bituminous Mixtures-Test Methods for Hot Mix Asphalt Part 12: Determination of the Water Sensitivity of Bituminous Specimens. The Commonwealth Standards Network: London, UK, 2008.
- CSN EN 12697-22; Bituminous Mixtures-Test Methods for Hot Mix Asphalt-Part 22: Wheel Tracking. The Commonwealth Standards Network: London, UK, 2020.
- CSN EN 12697-26; Bituminous Mixtures-Test Methods for Hot Mix Asphalt-Part 26: Stiffness. The Commonwealth Standards Network: London, UK, 2003.
- CSN EN 12697-24; Bituminous Mixtures-Test Methods for Hot Mix Asphalt Part 24: Resistance to Fatigue. The Commonwealth Standards Network: London, UK, 2012.
- DB 37/T 3564-2019; Anti-Rutting and Anti-Fatigue High Modulus Asphalt Mixture Design and Construction Technical Specifications. Shandong Provincial Market Supervision Administration: Jinan, China, 2019.
- GB/T 36143-2018; High Modulus Anti-Fatigue Asphalt Mixture for Road. People’s Communications Press: Beijing, China, 2018.
Technical Index | Test Results | Index Requirements | ||
---|---|---|---|---|
Coarse aggregate | Apparent relative density | 15~20 mm | 2.762 | ≤2.50 |
10~15 mm | 2.732 | |||
5~10 mm | 2.746 | |||
3~5 mm | 2.758 | |||
Water absorption rate (%) | 15~20 mm | 0.45 | ≤3.0 | |
10~15 mm | 0.32 | |||
5~10 mm | 0.45 | |||
3~5 mm | 0.63 | |||
Crushing value (%) | - | 19.2 | ≤28 | |
Needle flake content (%) | 15~20 mm | 3.5 | ≤18 | |
10~15 mm | 9.3 | |||
5~10 mm | 10.7 | |||
Soft stone content (%) | 0.55 | ≤5 | ||
Washing method <0.075 mm particle content (%) | 15~20 mm | 0.3 | ≤1.0 | |
10~15 mm | 0.6 | |||
5~10 mm | 0.4 | |||
3~5 mm | 0.9 | |||
Adhesion to asphalt, grade | 5 | ≥4 | ||
Fine aggregate | Apparent relative density | 2.644 | ≥2.5 | |
Sand equivalent (%) | 67 | ≥60 | ||
Angularity of fine aggregate (s) | 36 | ≥30 | ||
Methylene blue (g/Kg) | 7 | ≤25 |
Pilot Projects | China 15# | France 15# | EN 13924 | |
---|---|---|---|---|
Penetration (100 g, 5 s, 25 °C)/0.1 mm | 16.5 | 16.8 | 10–20 | |
Softening Point (5 °C)/°C | 64.25 | 66.6 | 58–78 | |
Ductility (5 cm/min, 15 °C) | Brittle | Brittle | - | |
Solubility/% | 99.6 | 99.78 | ≥99 | |
density (15 °C)/g/cm3 | 1.029 | 1.033 | - | |
Flash point/°C | 280 | 344 | ≥245 | |
dynamic viscosity/Pa·s | 6076 | 7219 | ≥700 | |
RTFOT | Quality change/% | −0.31 | 0.051 | ≤0.5 |
Residual penetration ratio/% | 78 | 71.6 | ≥55 |
Sieve Size (mm) | 26.5 | 19 | 16 | 13.2 | 9.5 | 4.75 | 2.36 | 1.18 | 0.6 | 0.3 | 0.15 | 0.075 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
EME-14 continuous | 100 | 100 | 100 | 97 | 90.1 | 48.7 | 33.1 | 25.7 | 16.1 | 10.6 | 7.9 | 5.7 |
EME-14 intermittent | 100 | 100 | 100 | 88.6 | 63.7 | 47.1 | 33.9 | 26.4 | 16.4 | 10.7 | 7.7 | 5.8 |
HMAC-20 | 100 | 96.2 | 86.2 | 75.4 | 56.2 | 34.6 | 24.3 | 19.3 | 12.6 | 8.9 | 7.1 | 5.7 |
Design upper limit | 100 | 100 | - | - | 82.0 | 64.0 | 43.0 | - | - | - | - | 8.0 |
Design lower limit | 100 | 90.0 | - | - | 66.0 | 41.0 | 28.0 | - | - | - | - | 6.0 |
Design median | 100 | 95.0 | - | - | 74.0 | 52.5 | 35.5 | - | - | - | - | 7.0 |
Mixture Type | G(%) | S(%) | s(%) | f(%) | ρG | Oil–Stone Ratio/% | Abundance Coefficient |
---|---|---|---|---|---|---|---|
EME-14 (continuous and intermittent) | 37 | 50.4 | 4.2 | 7.7 | 2.730 | 5.7 | 3.46 |
HMAC-20 | 58.6 | 33.2 | 3.4 | 4.8 | 2.730 | 5.3 | 3.44 |
Test Level | Test Item | Test Methods |
---|---|---|
Level 1 | Rotational compaction void ratio (%) | EN 12697-31 [32] |
Water stability: Durize test (Compressive strength ratio, %) | EN 12697-12 (Method B) [33] | |
Level 2 | High-temperature stability: French wheel rutting test (30,000 times, 60 °C) | EN 12697-22 [34] |
Level 3 | Stiffness modulus: complex modulus (MPa, 15 °C, 10 Hz/0.02 s) | EN 12697-26 [35] |
Level 4 | Fatigue life: two-point bending fatigue of trapezoidal beam (10 °C, 25 Hz, 106 cycles, 130 με) | EN 12697-24 [36] |
Asphalt Type | Creep Stiffness Modulus S/−6 °C (Average Value) | Standard Deviation | Creep Rate m/−6 °C (Average Value) | Standard Deviation |
---|---|---|---|---|
France 15# | 256 | 1.63 | 0.365 | 0.021 |
China 15# | 264 | 2.06 | 0.36 | 0.016 |
Asphalt Material | 9.75 Psi | 20 Psi | ||
---|---|---|---|---|
Maximum Creep Deflection (mm) | Elastic Recovery Rate (%) | Maximum Creep Deflection (mm) | Elastic Recovery Rate (%) | |
China 15# | 0.0039 | 82.1 | 0.0128 | 61.7 |
France 15# | 0.0046 | 79.5 | 0.0104 | 65.4 |
Gradation Type | Void Ratio/% | Standard Deviation |
---|---|---|
EME-14 continuous-France 15# | 3.65 | 0.033 |
EME-14 discontinuous-France 15# | 3.48 | 0.012 |
HMAC-20-France 15# | 3.58 | 0.024 |
EME-14 continuous-China 15# | 3.57 | 0.012 |
EME-14 discontinuous-China 15# | 3.52 | 0.021 |
HMAC-20-China 15# | 3.63 | 0.016 |
Gradation Type | Specimen of Immersion Group (Average Value) | Test Pieces of the Comparison Group (Average Value) | Compressive Strength Ratio | Standard Deviation | ||
---|---|---|---|---|---|---|
Void Ratio | Strength | Void Ratio | Strength | |||
(%) | (MPa) | (%) | (MPa) | |||
EME-14 continuous-France 15# | 3.98 | 15.13 | 3.88 | 14.95 | 101.2 | 1.29 |
EME-14 discontinuous-France 15# | 2.96 | 18.53 | 3.12 | 18.16 | 102.04 | 2.09 |
HMAC-20-France 15# | 3.78 | 17.38 | 3.56 | 17.05 | 101.94 | 1.32 |
EME-14 continuous-China 15# | 4.07 | 14.8 | 4.16 | 14.75 | 100.34 | 2.16 |
EME-14 discontinuous-China 15# | 3.1 | 17.41 | 2.52 | 17.12 | 101.69 | 1.28 |
HMAC-20-China 15# | 4.01 | 16.15 | 3.76 | 15.95 | 101.25 | 1.51 |
Mixture Type | a | b | Curve Equation | R2 |
---|---|---|---|---|
EME 14 continuous-France 15# | 0.1086 | 0.1703 | Ln(Pi) = 0.1086 × Ln(N) + 0.1703 | 0.9992 |
EME 14 continuous-China 15# | 0.1148 | 0.1402 | Ln(Pi) = 0.1148 × Ln(N) + 0.1402 | 0.9955 |
EME 14 discontinuous-France 15# | 0.1168 | 0.0749 | Ln(Pi) = 0.1168 × Ln(N) + 0.0749 | 0.9955 |
EME 14 discontinuous-China 15# | 0.1285 | 0.0201 | Ln(Pi) = 0.1285 × Ln(N) + 0.0201 | 0.9957 |
HMAC 20-France 15# | 0.126 | 0.1742 | Ln(Pi) = 0.126 × Ln(N) + 0.1742 | 0.9985 |
HMAC 20-China 15# | 0.1316 | 0.1465 | Ln(Pi) = 0.1316 × Ln(N) + 0.1465 | 0.9958 |
Gradation Type | Average Void Ratio (%) | Strain Level (με) | Average Fatigue Life (Time) | Standard Deviation |
---|---|---|---|---|
EME-14 Continuous + France 15# | 2.22 | 110 | 4,422,308 | 11,746.56 |
130 | 1,390,390 | 4874.22 | ||
150 | 617,943 | 2153.63 | ||
200 | 147,639 | 912.68 | ||
EME-14 Discontinuous + France 15# | 2.02 | 110 | 3,765,624 | 16,056.46 |
130 | 1,129,163 | 5384.39 | ||
150 | 570,676 | 2062.17 | ||
200 | 130,954 | 852.25 | ||
HMAC-20 France + 15# | 2.92 | 110 | 2,349,959 | 10,545.53 |
130 | 1,098,623 | 4472.47 | ||
150 | 482,917 | 1357.56 | ||
200 | 114,285 | 519.04 | ||
EME-14 Continuous + China 15# | 2.46 | 110 | 4,638,924 | 10,318.48 |
130 | 1,490,490 | 3135.88 | ||
150 | 605,541 | 2196.78 | ||
200 | 142,573 | 889.59 | ||
EME-14 Discontinuous + China 15# | 2.30 | 110 | 4,054,673 | 11,574.17 |
130 | 1,242,715 | 3633.73 | ||
150 | 563,702 | 1838.54 | ||
200 | 128,627 | 800.34 | ||
HMAC-20 + China 15# | 3.01 | 110 | 2,674,851 | 10,018.67 |
130 | 1,181,271 | 4154.14 | ||
150 | 472,865 | 2398.79 | ||
200 | 101,752 | 838.11 |
Mixture Type | a | 1/b | Curve Equation | R2 |
---|---|---|---|---|
EME 14 continuous + France 15# | 18.068 | −5.6211 | Ln(N) = −5.6211 × Ln(ε) + 18.068 | 0.9932 |
EME 14 continuous + China 15# | 18.436 | −5.7886 | Ln(N) = −5.7886 × Ln(ε) + 18.436 | 0.9938 |
EME 14 discontinuous + France 15# | 17.764 | −5.5089 | Ln(N) = −5.5089 × Ln(ε) + 17.764 | 0.992 |
EME 14 discontinuous + China 15# | 18.111 | −5.6639 | Ln(N) = −5.6639 × Ln(ε) + 18.111 | 0.9945 |
HMAC 20 + France 15# | 17.09 | −5.232 | Ln(N) = −5.232 × Ln(ε) + 17.09 | 0.9994 |
HMAC 20 + China 15# | 17.476 | −5.4089 | Ln(N) = −5.4089 × Ln(ε) + 17.476 | 0.9981 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, G.; Wu, W.; Li, J.; Xu, Q.; Li, X.; Yan, X.; Han, Y.; Wei, J. Comparative Study on Road Performance of Low-Grade Hard Asphalt and Mixture in China and France. Coatings 2022, 12, 270. https://doi.org/10.3390/coatings12020270
Zeng G, Wu W, Li J, Xu Q, Li X, Yan X, Han Y, Wei J. Comparative Study on Road Performance of Low-Grade Hard Asphalt and Mixture in China and France. Coatings. 2022; 12(2):270. https://doi.org/10.3390/coatings12020270
Chicago/Turabian StyleZeng, Guodong, Wenjuan Wu, Juechi Li, Qinsheng Xu, Xianghang Li, Xiangpeng Yan, Ye Han, and Jincheng Wei. 2022. "Comparative Study on Road Performance of Low-Grade Hard Asphalt and Mixture in China and France" Coatings 12, no. 2: 270. https://doi.org/10.3390/coatings12020270
APA StyleZeng, G., Wu, W., Li, J., Xu, Q., Li, X., Yan, X., Han, Y., & Wei, J. (2022). Comparative Study on Road Performance of Low-Grade Hard Asphalt and Mixture in China and France. Coatings, 12(2), 270. https://doi.org/10.3390/coatings12020270