Non-Polar Gallium Nitride for Photodetection Applications: A Systematic Review
Abstract
:1. Introduction
2. Systematic Literature Review Protocol
2.1. Information Source
2.2. Source Strategy
2.3. Study Selection
2.4. Data Extraction
2.5. Inclusion and Exclusion Criteria
3. Taxonomy
3.1. Growth and Fabrication
3.1.1. Substrate
- I.
- C-plane Sapphire Substrate
- II.
- R-plane Sapphire Substrate
- III.
- A-plane Sapphire Substrate
- IV.
- Si Substrate
3.1.2. Photodetector Geometry and Metal Contacts
3.1.3. Deposition Technique and Layer Geometry
- I.
- Plasma-assisted Molecular Beam Epitaxy
- II.
- Metal Organic Chemical Vapor Deposition
- III.
- Laser Molecule Beam Epitaxy
- IV. Chemical Vapor Deposition
- V. Atmospheric Pressure Chemical Vapor Deposition
3.2. Electrical Properties
3.2.1. Responsivity
3.2.2. Detectivity Jones and Noise Equivalent Power (NEP)
3.2.3. Rise and Fall Time
3.2.4. Light of Illumination Power Density and Applied Bias
3.3. Structural, Morphological, and Optical Properties
3.3.1. Structural Properties
- I.
- X-ray Diffractions
- II.
- Raman Spectroscopy
- III.
- Transmission Electron Microscopy
3.3.2. Morphological Analysis
3.3.3. Photoluminescence
4. Comprehensive Analysis of Bibliometric Analysis
4.1. Annual Scientific Production
4.2. Word Cloud
4.3. Factor Analysis
5. Challenges, Motivations, and Future Opportunities
5.1. Challenges
5.2. Motivations
5.3. Future Opportunities
5.3.1. Growth Conditions
5.3.2. Fabrication
5.3.3. Characterization
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmad Makinudin, A.H.; Al-Zuhairi, O.; Anuar, A.; Zainorin, M.Z.; Abu Bakar, A.S.; DenBaars, S.; Supangat, A. Impact of crystallinity towards the performance of semi-polar (11–22) GaN UV photodetector. Mater. Lett. 2021, 286, 129244. [Google Scholar] [CrossRef]
- Azman, A.; Kamarundzaman, A.; Bakar, A.S.A.; Abd Majid, W.H. The optimization of n-type and p-type m-plane GaN grown on m-plane sapphire substrate by metal organic chemical vapor deposition. Mater. Sci. Semicond. Process. 2021, 131, 105836. [Google Scholar] [CrossRef]
- Kamarundzaman, A.; Bakar, A.S.A.; Azman, A.; Omar, A.-Z.; Talik, N.A.; Supangat, A.; Abd Majid, W.H. Impact of sandwiched strain periodic multilayer AlN/GaN on strain and crystalline quality of a-plane GaN. Sci. Rep. 2021, 11, 9724. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Tang, B.; Wan, H.; Sun, H.; Zhou, S.; Dai, J.; Chen, C.; Liu, S.; Guo, L.J. Boosted ultraviolet electroluminescence of InGaN/AlGaN quantum structures grown on high-index contrast patterned sapphire with silica array. Nano Energy 2020, 69, 104427. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, X.; Yan, H.; Chen, Z.; Liu, Y.; Liu, S. Highly efficient GaN-based high-power flip-chip light-emitting diodes. Opt. Express 2019, 27, A669–A692. [Google Scholar] [CrossRef]
- Zhao, X.; Tang, B.; Gong, L.; Bai, J.; Ping, J.; Zhou, S. Rational construction of staggered InGaN quantum wells for efficient yellow light-emitting diodes. Appl. Phys. Lett. 2021, 118, 182102. [Google Scholar] [CrossRef]
- Gundimeda, A.; Krishna, S.; Aggarwal, N.; Sharma, A.; Sharma, N.D.; Maurya, K.K.; Husale, S.; Gupta, G. Fabrication of non-polar GaN based highly responsive and fast UV photodetector. Appl. Phys. Lett. 2017, 110, 103507. [Google Scholar] [CrossRef]
- He, T.; Zhang, X.; Ding, X.; Sun, C.; Zhao, Y.; Yu, Q.; Ning, J.; Wang, R.; Yu, G.; Lu, S. Broadband ultraviolet photodetector based on vertical Ga2O3/GaN nanowire array with high responsivity. Adv. Opt. Mater. 2019, 7, 1801563. [Google Scholar] [CrossRef]
- Cai, Y.F.; Shen, S.H.; Zhu, C.Q.; Zhao, X.M.; Bai, J.; Wang, T. Nonpolar (11–20) GaN Metal-Semiconductor-Metal Photodetectors with Superior Performance on Silicon. ACS Appl. Mater. Interfaces 2020, 12, 25031–25036. [Google Scholar] [CrossRef]
- Guo, F.; Yang, B.; Yuan, Y.; Xiao, Z.; Dong, Q.; Bi, Y.; Huang, J. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nat. Nanotechnol. 2012, 7, 798–802. [Google Scholar] [CrossRef]
- Lubin, D.; Jensen, E.H. Effects of clouds and stratospheric ozone depletion on ultraviolet radiation trends. Nature 1995, 377, 710–713. [Google Scholar] [CrossRef]
- Alaie, Z.; Mohammad Nejad, S.; Yousefi, M.H. Recent advances in ultraviolet photodetectors. Mater. Sci. Semicond. Process. 2015, 29, 16–55. [Google Scholar] [CrossRef]
- Crefcoeur, R.P.; Yin, R.; Ulm, R.; Halazonetis, T.D. Ultraviolet-B-mediated induction of protein-protein interactions in mammalian cells. Nat. Commun. 2013, 4, 1779. [Google Scholar] [CrossRef] [Green Version]
- Sang, L.; Liao, M.; Sumiya, M. A comprehensive review of semiconductor ultraviolet photodetectors: From thin film to one-dimensional nanostructures. Sensors 2013, 13, 10482–10518. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Nihtianov, S. Comparative study of silicon-based ultraviolet photodetectors. IEEE Sens. J. 2012, 12, 2453–2459. [Google Scholar] [CrossRef]
- Munoz, E.; Monroy, E.; Pau, J.; Calle, F.; Omnes, F.; Gibart, P. III nitrides and UV detection. J. Phys. Condens. Matter 2001, 13, 7115. [Google Scholar] [CrossRef]
- Pant, R.; Singh, D.K.; Chowdhury, A.M.; Roul, B.; Nanda, K.K.; Krupanidhi, S.B. Highly Responsive, Self-Powered a-GaN Based UV-A Photodetectors Driven by Unintentional Asymmetrical Electrodes. ACS Appl. Electron. Mater. 2020, 2, 769–779. [Google Scholar] [CrossRef]
- Li, J.; Xi, X.; Li, X.; Lin, S.; Ma, Z.; Xiu, H.; Zhao, L. Ultra-High and Fast Ultraviolet Response Photodetectors Based on Lateral Porous GaN/Ag Nanowires Composite Nanostructure. Adv. Opt. Mater. 2020, 8, 1902162. [Google Scholar] [CrossRef]
- Pant, R.K.; Singh, D.K.; Roul, B.; Chowdhury, A.M.; Chandan, G.; Nanda, K.K.; Krupanidhi, S.B. Photodetection Properties of Nonpolar a-Plane GaN Grown by Three Approaches Using Plasma-Assisted Molecular Beam Epitaxy. Phys. Status Solidi A 2019, 216, 1900171. [Google Scholar] [CrossRef]
- Mishra, M.; Gundimeda, A.; Krishna, S.; Aggarwal, N.; Goswami, L.; Gahtori, B.; Bhattacharyya, B.; Husale, S.; Gupta, G. Surface-Engineered Nanostructure-Based Efficient Nonpolar GaN Ultraviolet Photodetectors. ACS Omega 2018, 3, 2304–2311. [Google Scholar] [CrossRef]
- Chandan, G.; Mukundan, S.; Mohan, L.; Roul, B.; Krupanidhi, S. Trap modulated photoresponse of InGaN/Si isotype heterojunction at zero-bias. J. Appl. Phys. 2015, 118, 024503. [Google Scholar] [CrossRef]
- Chowdhury, A.M.; Pant, R.; Roul, B.; Singh, D.K.; Nanda, K.K.; Krupanidhi, S.B. Double Gaussian distribution of barrier heights and self-powered infrared photoresponse of InN/AlN/Si (111) heterostructure. J. Appl. Phys. 2019, 126, 025301. [Google Scholar] [CrossRef]
- Pant, R.; Shetty, A.; Chandan, G.; Roul, B.; Nanda, K.K.; Krupanidhi, S.B. In-Plane Anisotropic Photoconduction in Nonpolar Epitaxial a-Plane GaN. ACS Appl. Mater. Interfaces 2018, 10, 16918–16923. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Kuznia, J.; Olson, D.; Van Hove, J.; Blasingame, M.; Reitz, L. High-responsivity photoconductive ultraviolet sensors based on insulating single-crystal GaN epilayers. Appl. Phys. Lett. 1992, 60, 2917–2919. [Google Scholar] [CrossRef]
- Shetty, A.; Sundar, K.J.; Roul, B.; Mukundan, S.; Chandan, G.; Mohan, L.; Ghosh, A.; Vinoy, K.; Krupanidhi, S. Plasmonic enhancement of photocurrent in GaN based UV photodetectors. In Proceedings of the 2014 IEEE 2nd International Conference on Emerging Electronics (ICEE), Bengaluru, India, 3–6 December 2014; pp. 1–4. [Google Scholar]
- Li, D.; Sun, X.; Song, H.; Li, Z.; Chen, Y.; Miao, G.; Jiang, H. Influence of threading dislocations on GaN-based metal-semiconductor-metal ultraviolet photodetectors. Appl. Phys. Lett. 2011, 98, 011108. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Yang, C.; Liu, L.; Cao, H.; Lin, S.; Xi, X.; Li, X.; Ma, Z.; Wang, K.; Patanè, A.; et al. High Responsivity and Wavelength Selectivity of GaN-Based Resonant Cavity Photodiodes. Adv. Opt. Mater. 2020, 8, 1901276. [Google Scholar] [CrossRef]
- Omar, A.-Z.; Bakar, A.S.B.A.; Makinudin, A.H.A.; Khudus, M.I.M.A.; Azman, A.; Kamarundzaman, A.; Supangat, A. Effect of low NH 3 flux towards high quality semi-polar (11–22) GaN on m-plane sapphire via MOCVD. Superlattices Microstruct. 2018, 117, 207–214. [Google Scholar] [CrossRef]
- Farrell, R.; Young, E.; Wu, F.; DenBaars, S.; Speck, J. Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices. Semicond. Sci. Technol. 2012, 27, 024001. [Google Scholar] [CrossRef]
- Mukundan, S.; Roul, B.; Shetty, A.; Chandan, G.; Mohan, L.; Krupanidhi, S.B. Enhanced UV detection by non-polar epitaxial GaN films. AIP Adv. 2015, 5, 127208. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wang, W.; Zheng, Y.; You, J.; Huang, S.; Wu, K.; Kong, D.; Luo, Z.; Chen, H.; Li, G. Defect effect on the performance of nonpolar GaN-based ultraviolet photodetectors. Appl. Phys. Lett. 2021, 118, 053501. [Google Scholar] [CrossRef]
- Patsha, A.; Pandian, R.; Dhara, S.; Tyagi, A.K. Nonpolar p-GaN/n-Si heterojunction diode characteristics: A comparison between ensemble and single nanowire devices. J. Phys. D Appl. Phys. 2015, 48, 395102. [Google Scholar] [CrossRef] [Green Version]
- Mukundan, S.; Mohan, L.; Chandan, G.; Roul, B.; Krupanidhi, S. Semipolar and nonpolar GaN epi-films grown on m-sapphire by plasma assisted molecular beam epitaxy. J. Appl. Phys. 2014, 116, 204502. [Google Scholar] [CrossRef]
- Wang, W.; Zheng, Y.; Li, X.; Li, Y.; Huang, L.; Li, G. High-performance nonpolar a-plane GaN-based metal–semiconductor–metal UV photo-detectors fabricated on LaAlO 3 substrates. J. Mater. Chem. C 2018, 6, 3417–3426. [Google Scholar] [CrossRef]
- Al-Zuhairi, O.; Anuar, A.; Makinudin, A.H.A.; Bakar, A.S.A.; Azlan, M.; Supangat, A. Magnesium doped semipolar (11–22) p-type gallium nitride: Impact of dopant concentration variants towards grain size distributions and crystalline quality. Thin Solid Films 2021, 741, 139003. [Google Scholar] [CrossRef]
- Rajpalke, M.K.; Roul, B.; Kumar, M.; Bhat, T.N.; Sinha, N.; Krupanidhi, S. Structural and optical properties of nonpolar (11−20) a-plane GaN grown on (1−102) r-plane sapphire substrate by plasma-assisted molecular beam epitaxy. Scr. Mater. 2011, 65, 33–36. [Google Scholar] [CrossRef]
- Al-Zuhairi, O.; Makinudin, A.H.A.; Shuhaimi, A.; Azman, A.; Kamarudzaman, A.; Daud, A.N.M.; Abdullah, E.T. Effect of ammonia/gallium ratio and growth temperature towards the surface morphology of semi-polar GaN grown on m-plane sapphire via MOCVD. Educ. J. Sci. Math. Technol. 2021, 8, 6–15. [Google Scholar]
- Ren, B.; Liao, M.; Sumiya, M.; Huang, J.; Wang, L.; Koide, Y.; Sang, L. Vertical-type Ni/GaN UV photodetectors fabricated on free-standing GaN substrates. Appl. Sci. 2019, 9, 2895. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.K.; Aggarwal, N.; Krishna, S.; Kumar, R.; Husale, S.; Gupta, V.; Gupta, G. GaN-UV photodetector integrated with asymmetric metal semiconductor metal structure for enhanced responsivity. J. Mater. Sci. Mater. Electron. 2018, 29, 8958–8963. [Google Scholar] [CrossRef]
- Sun, X.; Li, D.; Li, Z.; Song, H.; Jiang, H.; Chen, Y.; Miao, G.; Zhang, Z. High spectral response of self-driven GaN-based detectors by controlling the contact barrier height. Sci. Rep. 2015, 5, 16819. [Google Scholar] [CrossRef] [Green Version]
- Anuar, A.; Makinudin, A.H.A.; Al-Zuhairi, O.; Bakar, A.S.A.; Supangat, A. Crystal quality and surface structure tuning of semi-polar (11–22) GaN on m-plane sapphire via in-situ multiple ammonia treatment. Thin Solid Films 2020, 697, 137817. [Google Scholar] [CrossRef]
- Bagheri, M.; Jafari, S.M.; Eikani, M.H. Ultrasonic-assisted production of zero-valent iron-decorated graphene oxide/activated carbon nanocomposites: Chemical transformation and structural evolution. Mater. Sci. Eng. C 2021, 118, 111362. [Google Scholar] [CrossRef] [PubMed]
- Amargianitakis, E.; Tsagaraki, K.; Kostopoulos, A.; Konstantinidis, G.; Delamadeleine, E.; Monroy, E.; Pelekanos, N. Non-polar GaN/AlGaN quantum-well polariton laser at room temperature. Phys. Rev. B 2021, 104, 125311. [Google Scholar] [CrossRef]
- Jabbar, H.D.; Fakhri, M.A.; AbdulRazzaq, M.J. Gallium Nitride–Based Photodiode: A review. Mater. Today. Proc. 2021, 42, 2829–2834. [Google Scholar] [CrossRef]
- Omnès, F.; Monroy, E.; Muñoz, E.; Reverchon, J.-L. Wide bandgap UV photodetectors: A short review of devices and applications. In Proceedings of the Gallium Nitride Materials and Devices II, San Jose, CA, USA, 8 February 2007; p. 64730E. [Google Scholar]
- Alamoodi, A.; Zaidan, B.; Zaidan, A.; Albahri, O.; Mohammed, K.; Malik, R.; Almahdi, E.; Chyad, M.; Tareq, Z.; Albahri, A. Sentiment analysis and its applications in fighting COVID-19 and infectious diseases: A systematic review. Expert Syst. Appl. 2020, 167, 114155. [Google Scholar] [CrossRef] [PubMed]
- Broadus, R.N. Toward a definition of “bibliometrics”. Scientometrics 1987, 12, 373–379. [Google Scholar] [CrossRef]
- Diodato, V.P.; Gellatly, P. Dictionary of Bibliometrics; Routledge: Oxfordshire, UK, 2013. [Google Scholar]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Sousa, J.C.; Santos, J.C.M.; Rubio, A.J.; Paccola, E.A.; Yamaguchi, N.U. Bibliometric Analysis of the Research Progress on Graphene Inks from 2008 to 2018. Int. J. Chem. Mater. Eng. 2019, 13, 308–312. [Google Scholar]
- Alobaidi, O.; Chelvanathan, P.; Kiong, T.; Bais, B.; Akhtaruzzaman, M.; Amin, N. Transparent Antenna for Green Communication Feature (Taxonomy Analysis, Open Challenges, Motivations, Future Directions and Recommendations): A Systematic Review. IEEE Access 2020, 10, 12286–12321. [Google Scholar] [CrossRef]
- Albahri, O.; Zaidan, A.; Albahri, A.; Zaidan, B.; Abdulkareem, K.H.; Al-Qaysi, Z.; Alamoodi, A.; Aleesa, A.; Chyad, M.; Alesa, R. Systematic review of artificial intelligence techniques in the detection and classification of COVID-19 medical images in terms of evaluation and benchmarking: Taxonomy analysis, challenges, future solutions and methodological aspects. J. Infect. Public Health 2020, 13, 1381–1396. [Google Scholar] [CrossRef]
- Mukundan, S.; Mohan, L.; Chandan, G.; Roul, B.; Krupanidhi, S.B.; Shinde, S.; Nanda, K.K.; Maiti, R.; Ray, S.K. High indium non-polar InGaN clusters with infrared sensitivity grown by PAMBE. AIP Adv. 2015, 5, 037112. [Google Scholar] [CrossRef]
- Goel, N.; Kumar, R.; Roul, B.; Kumar, M.; Krupanidhi, S. Wafer-scale synthesis of a uniform film of few-layer MoS2 on GaN for 2D heterojunction ultraviolet photodetector. J. Phys. D Appl. Phys. 2018, 51, 374003. [Google Scholar] [CrossRef]
- Zhang, H.; Guan, N.; Piazza, V.; Kapoor, A.; Bougerol, C.; Julien, F.; Babichev, A.; Cavassilas, N.; Bescond, M.; Michelini, F. Comprehensive analyses of core-shell InGaN/GaN single nanowire photodiodes. J. Phys. D Appl. Phys. 2017, 50, 484001. [Google Scholar] [CrossRef]
- Aggarwal, V.; Ramesh, C.; Tyagi, P.; Gautam, S.; Sharma, A.; Husale, S.; Kumar, M.S.; Kushvaha, S. Controlled epitaxial growth of GaN nanostructures on sapphire (11–20) using laser molecular beam epitaxy for photodetector applications. Mater. Sci. Semicond. Process. 2021, 125, 105631. [Google Scholar] [CrossRef]
- Song, W.; Wang, X.; Xia, C.; Wang, R.; Zhao, L.; Guo, D.; Chen, H.; Xiao, J.; Su, S.; Li, S. Improved photoresponse of a-axis GaN microwire/p-polymer hybrid photosensor by the piezo-phototronic effect. Nano Energy 2017, 33, 272–279. [Google Scholar] [CrossRef]
- Tsai, C.-Y.; Gupta, K.; Wang, C.-H.; Liu, C.-P. Ultrahigh UV responsivity of single nonpolar a-axial GaN nanowire with asymmetric piezopotential via piezo-phototronic effect: Dependence of carrier screening effect on strain. Nano Energy 2017, 34, 367–374. [Google Scholar] [CrossRef]
- Chen, X.; Liu, K.; Zhang, Z.; Wang, C.; Li, B.; Zhao, H.; Zhao, D.; Shen, D. Self-powered solar-blind photodetector with fast response based on Au/β-Ga2O3 nanowires array film Schottky junction. ACS Appl. Mater. Interfaces 2016, 8, 4185–4191. [Google Scholar] [CrossRef]
- Habibpoor, A.; Mashayekhi, H.R. Numerical modeling of the transient response of metal-semiconductor-metal photodetector using discrete Fourier transform method. J. Phys. Conf. Ser. 2011, 286, 012035. [Google Scholar] [CrossRef]
- Jones, A.C.; Hitchman, M.L. Chemical Vapour Deposition: Precursors, Processes and Applications; RSC Publishing: London, UK, 2009; Volume 1, pp. 1–36. [Google Scholar]
- Zheng, Y.; Li, Y.; Tang, X.; Wang, W.; Li, G. A Self-Powered High-Performance UV Photodetector Based on Core–Shell GaN/MoO3−x Nanorod Array Heterojunction. Adv. Opt. Mater. 2020, 8, 2000197. [Google Scholar] [CrossRef]
- Azman, A.; Shuhaimi, A.; Omar, A.-Z.; Kamarundzaman, A.; Khudus, M.I.M.A.; Ariff, A.; Samsudin, M.; Zainal, N.; Abd Rahman, S. Metal organic chemical vapor deposition of m-plane GaN epi-layer using a three-step approach towards enhanced surface morphology. Thin Solid Films 2018, 667, 48–54. [Google Scholar] [CrossRef]
- Moram, M.; Johnston, C.; Kappers, M.; Humphreys, C. The effects of film surface roughness on x-ray diffraction of nonpolar gallium nitride films. J. Phys. D Appl. Phys. 2009, 42, 135407. [Google Scholar] [CrossRef]
- Kamarudzaman, A.; Bakar, A.S.B.A.; Azman, A.; Omar, A.-Z.; Supangat, A.; Talik, N.A. Positioning of periodic AlN/GaN multilayers: Effect on crystalline quality of a-plane GaN. Mater. Sci. Semicond. Process. 2020, 105, 104700. [Google Scholar] [CrossRef]
- Chakraborty, A.; Kim, K.; Wu, F.; Speck, J.; DenBaars, S.; Mishra, U. Defect reduction in nonpolar a-plane GaN films using in situ Si N x nanomask. Appl. Phys. Lett. 2006, 89, 041903. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Li, H.; Wang, L.; Meng, Y.; Ji, Z.; Li, F.; Wei, H.; Yang, S.; Wang, Z. Anisotropically biaxial strain in non-polar (112–0) plane InxGa1−x N/GaN layers investigated by X-ray reciprocal space mapping. Sci. Rep. 2017, 7, 4497. [Google Scholar] [CrossRef] [Green Version]
- Laskar, M.R.; Ganguli, T.; Rahman, A.; Mukherjee, A.; Hatui, N.; Gokhale, M.; Bhattacharya, A. Distorted wurtzite unit cells: Determination of lattice parameters of nonpolar a-plane AlGaN and estimation of solid phase Al content. J. Appl. Phys. 2011, 109, 013107. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Wu, Z.; Yu, C.; Zhang, Q.; Sun, Y.; Xiong, Y.; Han, X.; Tong, L.; He, Q.; Ponce, F. Comparative study on MOCVD growth of a-plane GaN films on r-plane sapphire substrates using GaN, AlGaN, and AlN buffer layers. J. Electron. Mater. 2009, 38, 1938–1943. [Google Scholar] [CrossRef]
- Krishna, T.S.; Aggarwal, N.; Reddy, G.A.; Dugar, P.; Mishra, M.; Goswami, L.; Dilawar, N.; Kumar, M.; Maurya, K.; Gupta, G. Probing the correlation between structure, carrier dynamics and defect states of epitaxial GaN film on (11–20) sapphire grown by rf-molecular beam epitaxy. RSC Adv. 2015, 5, 73261–73267. [Google Scholar] [CrossRef]
- Reshchikov, M.A.; Morkoç, H. Luminescence properties of defects in GaN. J. Appl. Phys. 2005, 97, 5–19. [Google Scholar] [CrossRef]
- Ding, K.; Avrutin, V.; Izyumskaya, N.; Metzner, S.; Bertram, F.; Christen, J.; Ozgur, U.; Morkoc, H. Recent progress in nonpolar and semi-polar GaN light emitters on patterned Si substrates. In Proceedings of the Gallium Nitride Materials and Devices XIII, San Francisco, CA, USA, 23 February 2018; p. 1053208. [Google Scholar]
- Patsha, A.; Dhara, S.; Tyagi, A. Localized tip enhanced Raman spectroscopic study of impurity incorporated single GaN nanowire in the sub-diffraction limit. Appl. Phys. Lett. 2015, 107, 123108. [Google Scholar] [CrossRef] [Green Version]
- Varshni, Y.P. Temperature dependence of the energy gap in semiconductors. Physica 1967, 34, 149–154. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, L.; Yang, S.; Li, H.; Wei, H.; Han, D.; Wang, Z. Anisotropic structural and optical properties of semi-polar (11–22) GaN grown on m-plane sapphire using double AlN buffer layers. Sci. Rep. 2016, 6, 20787. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Ozturk, M.; Demirel, P.; Cakmak, H.; Ozbay, E. MOCVD growth and optical properties of non-polar (1 1–2 0) a-plane GaN on (1 0–1 2) r-plane sapphire substrate. J. Cryst. Growth 2010, 312, 3438–3442. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Ko, T.-S.; Yerino, C.D.; Zhang, Y.; Lee, I.-H.; Han, J.; Lu, T.-C.; Kuo, H.-C.; Wang, S.-C. Effect of controlled growth dynamics on the microstructure of nonpolar a-plane GaN revealed by X-ray diffraction. Jpn. J. Appl. Phys. 2009, 48, 071002. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wang, W.; Zheng, Y.; Li, Y.; Huang, L.; Lin, Z.; Yu, Y.; Li, G. Defect-related anisotropic surface micro-structures of nonpolar a-plane GaN epitaxial films. CrystEngComm 2018, 20, 1198–1204. [Google Scholar] [CrossRef]
- Frank, F. Capillary equilibria of dislocated crystals. Acta Crystallogr. 1951, 4, 497–501. [Google Scholar] [CrossRef]
- Moram, M.; Vickers, M. X-ray diffraction of III-nitrides. Rep. Prog. Phys. 2009, 72, 036502. [Google Scholar] [CrossRef]
- Scheidsteger, T.; Haunschild, R.; Bornmann, L.; Ettl, C. Bibliometric Analysis in the Field of Quantum Technology. Quantum Rep. 2021, 3, 549–575. [Google Scholar] [CrossRef]
- Espadinha-Cruz, P.; Godina, R.; Rodrigues, E.M. A review of data mining applications in semiconductor manufacturing. Processes 2021, 9, 305. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, Y.; Zhou, J.; Xie, Y.; Xu, Q.; Zou, Y.; Guo, S.; Xu, H.; Sun, C.; Liu, S. Surface acoustic wave-based ultraviolet photodetectors: A review. Sci. Bull. 2020, 65, 587–600. [Google Scholar] [CrossRef] [Green Version]
- Moral Muñoz, J.A.; Herrera Viedma, E.; Santisteban Espejo, A.; Cobo, M.J. Software tools for conducting bibliometric analysis in science: An up-to-date review. El Prof. De La Inf. 2020, 29, e290103. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Ji, X.; Lau, S.P. Recent progress in group III-nitride nanostructures: From materials to applications. Mater. Sci. Eng. R 2020, 142, 100578. [Google Scholar] [CrossRef]
- Ni, X.; Wu, M.; Lee, J.; Li, X.; Baski, A.; Özgür, Ü.; Morkoç, H. Nonpolar m-plane GaN on patterned Si (112) substrates by metalorganic chemical vapor deposition. Appl. Phys. Lett. 2009, 95, 111102. [Google Scholar] [CrossRef] [Green Version]
- Bu, Y.; Liang, H.; Gao, K.; Zhang, B.; Zhang, X.; Shen, X.; Li, H.; Zhang, J. Wafer-scale fabrication of high-purity reduced graphene oxide films as ultrahigh-frequency capacitors with minimal self-discharge. Chem. Eng. J. 2020, 390, 124560. [Google Scholar] [CrossRef]
- Zu, X.; Wang, H.; Yi, G.; Zhang, Z.; Jiang, X.; Gong, J.; Luo, H. Self-powered UV photodetector based on heterostructured TiO2 nanowire arrays and polyaniline nanoflower arrays. Synth. Met. 2015, 200, 58–65. [Google Scholar] [CrossRef]
- Li, J.; Yuan, S.; Tang, G.; Li, G.; Liu, D.; Li, J.; Hu, X.; Liu, Y.; Li, J.; Yang, Z. High-performance, self-powered photodetectors based on perovskite and graphene. ACS Appl. Mater. Interfaces 2017, 9, 42779–42787. [Google Scholar] [CrossRef]
- Peng, X.; Zeng, Y.; Pan, X.; Wang, W.; Zhou, Y.; Wang, F.; Lu, Q.; Ye, Z. High-performance of self-powered UV photodetector with long-term stability based on ZnO nanorods and an iodine-free quasi solid-state electrolyte. RSC Adv. 2017, 7, 29440–29445. [Google Scholar] [CrossRef] [Green Version]
- Nusir, A.I.; Manasreh, M. Self-powered near-infrared photodetector based on asymmetrical Schottky interdigital contacts. IEEE Electron Device Lett. 2015, 36, 1172–1175. [Google Scholar] [CrossRef]
- Li, J.; Yin, S.; Shirolkar, M.M.; Li, M.; Wang, M.; Dong, X.; Song, X.; Wang, H. Tuning the properties of a self-powered UV photodetector based on ZnO and poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) by hydrogen annealing of ZnO nanorod arrays. Thin Solid Films 2017, 628, 101–106. [Google Scholar] [CrossRef]
- Wang, X.; Liu, K.; Chen, X.; Li, B.; Jiang, M.; Zhang, Z.; Zhao, H.; Shen, D. Highly wavelength-selective enhancement of responsivity in Ag nanoparticle-modified ZnO UV photodetector. ACS Appl. Mater. Interfaces 2017, 9, 5574–5579. [Google Scholar] [CrossRef]
- Zhu, H.; Shan, C.; Yao, B.; Li, B.; Zhang, J.; Zhao, D.; Shen, D.; Fan, X. High spectrum selectivity ultraviolet photodetector fabricated from an n-ZnO/p-GaN heterojunction. J. Phys. Chem. C 2008, 112, 20546–20548. [Google Scholar] [CrossRef]
- Chen, R.-S.; Chen, H.-Y.; Lu, C.-Y.; Chen, K.-H.; Chen, C.-P.; Chen, L.-C.; Yang, Y.-J. Ultrahigh photocurrent gain in m-axial GaN nanowires. Appl. Phys. Lett. 2007, 91, 223106. [Google Scholar] [CrossRef]
- Omar, A.-Z.; Shuhaimi, A.; Makinudin, A.H.A.; Khudus, M.I.A.; Supangat, A. Embedded AlN/GaN multi-layer for enhanced crystal quality and surface morphology of semi-polar (11–22) GaN on m-plane sapphire. Mater. Sci. Semicond. Process. 2018, 86, 1–7. [Google Scholar] [CrossRef]
- Makinudin, A.H.A.; Omar, A.-Z.; Bakar, A.S.A.; Anuar, A.; Supangat, A. Disilane Doping of Semi-Polar (11–22) n-GaN: The Impact of Terrace-Like Evolution toward the Enhancement of the Electrical Properties. Thin Solid Films 2020, 720, 138489. [Google Scholar] [CrossRef]
- Foronda, H.M.; Graupeter, S.; Mehnke, F.; Enslin, J.; Wernicke, T.; Kneissl, M. Reducing the grain density in semipolar (11–22) AlGaN surfaces on m-plane sapphire substrates. Jpn. J. Appl. Phys. 2019, 58, SC1026. [Google Scholar] [CrossRef]
- Ahmad Makinudin, A.H.; Omar, A.-Z.; Anuar, A.; Bakar, A.S.A.; DenBaars, S.P.; Supangat, A. Impact of a Strained Periodic Multilayer on the Surface and Crystal Quality of a Semipolar (11–22) GaN Template. Cryst. Growth Des. 2019, 19, 6092–6099. [Google Scholar] [CrossRef]
- Anuar, A.; Makinudin, A.H.A.; Al-Zuhairi, O.; Chanlek, N.; Bakar, A.S.A.; Supangat, A. Growth of Semi-Polar (112¯ 2) GaN on m-plane Sapphire via In-Situ Multiple Ammonia Treatment (I-SMAT) Method. Vacuum 2020, 174, 109208. [Google Scholar] [CrossRef]
- Omar, A.-Z.; Makinudin, A.H.A.; Shuhaimi, A.; Anuar, A.; Kamarudzaman, A.; Surani, N.; Supangat, A. Enhanced indium adsorption and surface evolution of semi-polar (11–22) LED via a strain periodic alternating superlattice (SPAS-L). Mater. Today Commun. 2021, 27, 102441. [Google Scholar] [CrossRef]
- Ooi, C.S.; Shuhaimi, A.; Tan, G.; Al-Zuhairi, O.; Abd Majid, W.H. Effect of Flux Rate Variation at Fixed V/III Ratio on Semi-Polar () GaN: Crystal Quality and Surface Morphology Study. Crystals 2022, 12, 247. [Google Scholar] [CrossRef]
Substrate | Photodetector Geometry | Contacts | Layer Geometry | Technique | Ref | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
c-sap | r-sap | Si | a-sap | MSM | pn | p-i-n | Hybrid | Al/Au | Au/Ni | Au | Ti/Al/Ti/Au | Pt | Silver Paste | Al | TF | NS | MS | PAMBE | PECVD | MOCVD | LMBE | CVD | APCVD | PLD | |
- | √ | - | - | √ | - | - | - | - | - | √ | - | - | - | - | √ | - | - | √ | - | - | - | - | - | - | [7] |
- | - | √ | - | √ | - | - | - | - | - | - | - | - | - | - | √ | - | - | - | √ | √ | - | - | - | - | [9] |
- | √ | - | - | - | - | - | - | - | - | √ | - | - | - | - | √ | - | - | √ | - | - | - | - | - | - | [19] |
- | - | - | √ | √ | - | - | - | - | - | - | - | √ | - | - | √ | - | - | - | - | - | √ | - | - | - | [56] |
- | - | √ | - | - | - | - | √ | - | - | - | - | - | √ | - | - | - | √ | - | √ | √ | - | - | - | - | [57] |
- | - | √ | - | √ | - | - | - | - | - | - | - | - | √ | - | - | √ | - | - | - | - | - | √ | - | - | [58] |
√ | - | √ | - | - | - | √ | - | - | - | - | √ | - | - | - | - | √ | - | - | - | √ | - | - | - | - | [55] |
- | - | √ | - | - | √ | - | - | - | √ | - | - | - | - | - | - | √ | - | - | - | - | - | - | √ | - | [32] |
√ | - | - | - | - | - | - | √ | √ | - | - | - | - | - | - | √ | √ | - | √ | - | - | - | - | - | - | [54] |
- | √ | - | - | √ | - | - | - | - | √ | - | - | - | - | - | √ | - | - | - | - | √ | - | - | - | √ | [31] |
- | √ | - | - | √ | - | - | - | - | - | √ | - | - | - | - | √ | - | - | - | - | - | √ | - | - | - | [30] |
- | √ | - | - | √ | - | - | - | - | - | - | - | - | - | √ | √ | - | - | √ | - | - | - | - | - | - | [53] |
- | √ | - | - | √ | - | - | - | - | - | √ | - | - | - | - | √ | - | - | - | - | - | √ | - | - | - | [17] |
- | √ | - | - | √ | - | - | - | - | - | √ | - | - | - | - | √ | - | - | √ | - | - | - | - | - | - | [23] |
- | √ | - | - | √ | - | - | - | - | - | √ | - | - | - | - | √ | √ | - | √ | - | - | - | - | - | - | [20] |
Responsivity | Detectivity Jones | Rise and Fall Time | Noise Equivalent Power W·Hz−1/2 | Applied Bias | Light of Illumination Power Density | Ref. |
---|---|---|---|---|---|---|
340 mA/W | 109 | 280 ms and 450 ms | 10−11 | 5 V | 1–13 mW/cm2 | [7] |
695.3 A/W 2218.53 A/W 12,628.3 A/W | - | 66 and 43 μs | - | 1 V 2 V 5 V | ~0.15–0.55 W/cm2 | [9] |
25 A/W | - | - | - | 1 V | 0.06 m W/cm2 | [19] |
NP-GaN (~358 mA/W) GaN film (~36 mA/W) NC-GaN (~7 mA/W) | 108 108 108 | - | 6.59 × 10−10 7.16 × 10−10 2.76 × 10−10 | 1 V 1 V 1 V | 1–13 mW/cm2 | [56] |
1.14 × 104 A/W | - | - | - | 3 V | 0.14–1.10 mW/cm2 | [57] |
1.3 × 105 (A/W) | - | - | - | −2 V–+2 V | 2.46–39.36 mW/cm2 | [58] |
0.14 A/W 0.16 A/W | - | - | - | 0 V 1 V | From 0 to 100% | [55] |
ensemble NW 69 mA/W single NW 1675 mA/W | - | - | - | ±4 V | - | [32] |
3.05 × 103 A/W | 1011 | - | - | 1 V | 10 to 70 mW/cm2 | [54] |
0.61 A/W 0.82 A/W 1.04 A/W 1.31 A/W 1.60 A/W | - | 24 ms and 8 ms | - | 1 V 2 V 3 V 4 V 5 V | 0–104 W/m2 | [31] |
0.155 A/W | - | 6 s and 15 s | - | 2 V | 0.3 mW/cm2 | [30] |
9.57 × 10−4 A/W | - | 3 s and 15 s | - | 2 V | 0.3 mW/cm2 | [54] |
4.67 mA/W | 3.0 × 1013 | 0.050 s and 0.12 s | - | 0 V | 0.06 mW/cm2 | [17] |
GaN375 = 1.8803 mA/W 13.024 mA/W | - | 0.21 s and 1.2 s | - | 1 V 5 V | 0.3 mW/cm2 | [23] |
Ps = 4.4 mA/W FN = 5.6 mA/W TSS = 24.5 mA/W TPN = 25.9 mA/W | 0.43 × 108 0.76 × 108 2.73 × 108 2.83 × 108 | 853 ms and 1622 ms 545 ms and 509 ms 180 ms and 692 ms 151 ms and 453 ms | 31.7 × 10−10 17.5 × 10−10 4.8 × 10−10 4.7 × 10−10 | 3 V | 13 mW/cm2 | [20] |
Structural Properties | Surface Morphology | Optical Properties | Refs | ||||||
---|---|---|---|---|---|---|---|---|---|
High Resolution X-ray Diffraction | Raman Spectroscopy | TEM | SEM | AFM | PL | ||||
PA | On | Off | RSM | ||||||
√ | √ | - | - | √ | - | √ | - | √ | [7] |
- | √ | - | - | - | - | √ | - | √ | [9] |
√ | √ | - | - | √ | - | - | - | - | [19] |
√ | √ | - | - | √ | - | √ | - | - | [56] |
- | - | - | - | √ | √ | √ | - | √ | [57] |
- | - | - | - | - | √ | √ | - | - | [58] |
- | - | - | - | - | √ | √ | - | √ | [55] |
- | - | - | - | - | - | √ | - | √ | [32] |
√ | - | - | - | √ | - | √ | √ | - | [54] |
√ | √ | - | - | - | √ | - | √ | - | [31] |
√ | √ | - | √ | √ | √ | √ | √ | - | [30] |
√ | - | - | - | - | - | √ | - | √ | [53] |
√ | √ | - | - | - | - | √ | √ | - | [17] |
√ | √ | √ | √ | - | - | √ | - | - | [23] |
- | - | - | - | - | - | √ | - | - | [20] |
Description | Results |
---|---|
Timespan | 2015:2021 |
Sources (journals, books, etc.) | 9 |
Documents | 15 |
Average years from publication | 3.13 |
Average citations per document | 16.47 |
Average citations per year per doc | 3.686 |
References | 510 |
Document types | |
Research articles | 15 |
Document contents | |
Keywords plus (ID) | 169 |
Author’s keywords (DE) | 45 |
Authors | |
Authors | 83 |
Author appearances | 113 |
Authors of single-authored documents | 0 |
Authors of multi-authored documents | 83 |
Author collaboration | |
Single-authored documents | 0 |
Documents per author | 0.181 |
Authors per document | 5.53 |
Co-authors per document | 7.53 |
Collaboration index | 5.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Zuhairi, O.; Shuhaimi, A.; Nayan, N.; Azman, A.; Kamarudzaman, A.; Alobaidi, O.; Ghanim, M.; Abdullah, E.T.; Zhu, Y. Non-Polar Gallium Nitride for Photodetection Applications: A Systematic Review. Coatings 2022, 12, 275. https://doi.org/10.3390/coatings12020275
Al-Zuhairi O, Shuhaimi A, Nayan N, Azman A, Kamarudzaman A, Alobaidi O, Ghanim M, Abdullah ET, Zhu Y. Non-Polar Gallium Nitride for Photodetection Applications: A Systematic Review. Coatings. 2022; 12(2):275. https://doi.org/10.3390/coatings12020275
Chicago/Turabian StyleAl-Zuhairi, Omar, Ahmad Shuhaimi, Nafarizal Nayan, Adreen Azman, Anas Kamarudzaman, Omar Alobaidi, Mustafa Ghanim, Estabraq T. Abdullah, and Yong Zhu. 2022. "Non-Polar Gallium Nitride for Photodetection Applications: A Systematic Review" Coatings 12, no. 2: 275. https://doi.org/10.3390/coatings12020275
APA StyleAl-Zuhairi, O., Shuhaimi, A., Nayan, N., Azman, A., Kamarudzaman, A., Alobaidi, O., Ghanim, M., Abdullah, E. T., & Zhu, Y. (2022). Non-Polar Gallium Nitride for Photodetection Applications: A Systematic Review. Coatings, 12(2), 275. https://doi.org/10.3390/coatings12020275