Effects of Modified Atmosphere Packaging, Storage Temperature, and Absorbent Pads on the Quality of Fresh Cape Hake Fish Fillets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Fish Samples and Packaging
2.2. Headspace Gas Analysis and Temperature
2.3. Physicochemical Analysis
2.3.1. pH
2.3.2. Color
2.3.3. Firmness Measurement
2.3.4. Drip Loss
2.4. Microbial Quality Analysis
2.5. Proximate Analysis
2.6. Sensory Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Headspace Gas Composition
3.2. Proximate Composition
3.3. Physicochemical Analysis
3.3.1. pH
3.3.2. Drip Loss
3.3.3. Fillet Firmness
3.3.4. Color Measurement
3.4. Microbiology Quality
3.5. Sensory Analysis
3.6. Correlation between Quality Indices
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moreira, A.B.; Visentainer, J.V.; de Souza, N.E.; Matsushita, M. Fatty acids profile and cholesterol contents of three Brazilian Brycon freshwater fishes. J. Food Compos. Anal. 2001, 14, 565–574. [Google Scholar] [CrossRef]
- Dave, D.; Routray, W. Current scenario of Canadian fishery and corresponding underutilized species and fishery by-products: A potential source of omega-3 fatty acids. J. Clean. Prod. 2018, 180, 617–641. [Google Scholar] [CrossRef]
- Del Nobile, M.A.; Corbo, M.R.; Speranza, B.; Sinigaglia, M.; Conte, A.; Caroprese, M. Combined effect of modified atmosphere packaging and active compounds on fresh blue fish burger. Int. J. Food Microbiol. 2009, 135, 281–287. [Google Scholar] [CrossRef]
- Pal, J.; Shukla, B.N.; Maurya, A.K.; Verma, H.O.; Pandey, G.; Amitha, A. A review on role of fish in human nutrition with special emphasis to essential fatty acid. Int. J. Fish. Aquat. Stud. 2018, 6, 427–430. [Google Scholar]
- Kris-Etherton, P.M.; Harris, W.S.; Appel, L.J. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 2002, 106, 2747–2757. [Google Scholar] [CrossRef] [PubMed]
- Trondsen, T.; Scholderer, J.; Lund, E.; Eggen, A.E. Perceived barriers to consumption of fish among Norwegian women. Appetite 2003, 41, 301–314. [Google Scholar] [CrossRef]
- Domingo, J.L.; Bocio, A.; Falco, G.; Llobet, J.M. Benefits and risks of fish consumption: Part I. A quantitative analysis of the intake of omega-3 fatty acids and chemical contaminants. Toxicology 2007, 230, 219–226. [Google Scholar] [CrossRef]
- AlAmmar, W.A.; Albeesh, F.H.; Ibrahim, L.M.; Algindan, Y.Y.; Yamani, L.Z.; Khattab, R.Y. Effect of omega-3 fatty acids and fish oil supplementation on multiple sclerosis: A systematic review. Nutr. Neurosci. 2021, 24, 569–579. [Google Scholar] [CrossRef] [PubMed]
- Ekmekcioglu, C.; Wallner, P.; Kundi, M.; Weisz, U.; Haas, W.; Hutter, H.P. Red meat, diseases, and healthy alternatives: A critical review. Crit. Rev. Food Sci. Nutr. 2018, 58, 247–261. [Google Scholar] [CrossRef]
- Béné, C.; Barange, M.; Subasinghe, R.; Pinstrup-Andersen, P.; Merino, G.; Hemre, G.I.; Williams, M. Feeding 9 billion by 2050–Putting fish back on the menu. Food Secur. 2015, 7, 261–274. [Google Scholar] [CrossRef] [Green Version]
- Obiero, K.; Meulenbroek, P.; Drexler, S.; Dagne, A.; Akoll, P.; Odong, R.; Kaunda-Arara, B.; Waidbacher, H. The contribution of fish to food and nutrition security in Eastern Africa: Emerging trends and future outlooks. Sustainability 2019, 11, 1636. [Google Scholar] [CrossRef] [Green Version]
- Castrica, M.; Pavlovic, R.; Balzaretti, C.M.; Curone, G.; Brecchia, G.; Copelotti, E.; Panseri, S.; Pessina, D.; Arnoldi, C.; Chiesa, L.M. Effect of High-Pressure Processing on Physico-Chemical, Microbiological and Sensory Traits in Fresh Fish Fillets (Salmo salar and Pleuronectes platessa). Foods 2021, 10, 1775. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.A. Postharvest losses of fish in developing countries. Nutr. Health 2008, 19, 273–287. [Google Scholar] [CrossRef] [PubMed]
- Food and Agricultural Organisation. World Review of Fisheries and Aquaculture Part 1. 2014. Available online: http://www.fao.org/docrep/013/i1820e/i1820e (accessed on 22 April 2021).
- Socaciu, M.I.; Semeniuc, C.A.; Vodnar, D.C. Edible films and coatings for fresh fish packaging: Focus on quality changes and shelf-life extension. Coatings 2018, 8, 366. [Google Scholar] [CrossRef] [Green Version]
- Dondero, M.; Cisternas, F.; Carvajal, L.; Simpson, R. Changes in quality of vacuum-packed cold-smoked salmon (Salmo salar) as a function of storage temperature. Food Chem. 2004, 87, 543–550. [Google Scholar] [CrossRef]
- Bellagha, S.; Sahli, A.; Farhat, A.; Kechaou, N.; Glenza, A. Studies on salting and drying of sardine (Sardinella aurita): Experimental kinetics and modelling. J. Food Eng. 2007, 78, 947–952. [Google Scholar] [CrossRef]
- De Silva, D.A.M.; Yamao, M. Regional preferences in the Japanese Seafood consumption: An empirical analysis of consumer purchasing behaviour on domestic versus imported seafood. Jpn. J. Reg. Fish. Soc. 2006, 46, 83–104. [Google Scholar]
- Speranza, B.; Corbo, M.; Conte, A.; Sinigaglia, M.; Del Nobile, M. Microbiological and sensorial quality assessment of ready-to-cook seafood products packaged under modified atmosphere. J. Food Sci. 2009, 74, M473–M478. [Google Scholar] [CrossRef]
- Ordonez, J.A.; Lopez-Galvez, D.E.; Fernandez, M.; Hierro, E.; de la Hoz, L. Microbial and physicochemical modifications of hake (Merluccius merluccius) steaks stored under carbon dioxide enriched atmospheres. J. Sci. Food Agric. 2000, 80, 1831–1840. [Google Scholar] [CrossRef]
- Erkan, N.; Ozden, Ö.; Inugur, M. The effects of modified atmosphere and vacuum packaging on quality of chub mackerel. Int. J. Food Sci.Technol. 2007, 42, 1297–1304. [Google Scholar] [CrossRef]
- Sivertsvik, M. The optimized modified atmosphere for packaging of pre- rigor filleted farmed cod (Gadus morhua) is 63 mL/100 mL oxygen and 37 mL/100 mL carbon dioxide. LWT Food Sci. Technol. 2007, 40, 430–438. [Google Scholar] [CrossRef]
- Lauzon, H.L.; Magnusson, H.; Sveinsdottir, K.; Gudjonsdottir, M.; Martinsdottir, E. Effect of brining, modified atmosphere packaging, and super-chilling on the shelf-life of cod (Gadus morhua) loins. J. Food Sci. 2009, 74, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Yesudhason, P.; Gopal, T.K.S.; Ravi Shankar, C.N.; Lalitha, K.V.; Kumar, K.N.A. Effect of modified atmosphere packaging on chemical, textural, microbiological and sensory quality of seer fish (Scomberomorus commerson) steaks packaged in thermo-formed trays at 0–2 °C. J. Food Process. Preserv. 2009, 33, 777–797. [Google Scholar] [CrossRef]
- Caglak, E.; Cakli, S.; Kilinc, B. Effect of modified atmosphere packaging on quality and shelf-life of salted bonito (Sarda sarda). J. Aquat. Food Prod. Technol. 2012, 21, 206–221. [Google Scholar] [CrossRef]
- Angis, S.; Oguzhan, P. Effect of thyme essential oil and packaging treatments on chemical and microbiological properties of fresh rainbow trout (Oncorhynchus mykiss) fillets during storage at refrigerator temperatures. Afr. J. Microbiol. Res. 2013, 7, 1136–1143. [Google Scholar]
- Lekjing, S.; Venkatachalam, K. Effects of modified atmospheric packaging conditions on the quality changes of pasteurized oyster (Crassostrea belcheri) meat during chilled storage. J. Aquat. Food Prod. Technol. 2018, 27, 1106–1119. [Google Scholar] [CrossRef]
- Sáez, M.I.; Martínez, T.F.; Cárdenas, S.; Suárez, M.D. Effects of vacuum and modified atmosphere on textural parameters and structural proteins of cultured meagre (Argyrosomus regius) fillets. Food Sci. Technol. Int. 2015, 21, 467–478. [Google Scholar] [CrossRef]
- Hernández, E.J.G.P.; de Carvalho, R.N., Jr.; Joele, M.R.S.P.; da Silva Araújo, C.; Lourenço, L.D.F.H. Effects of modified atmosphere packing over the shelf life of sous vide from captive pirarucu (Arapaima gigas). Innov. Food Sci. Emerg. Technol. 2017, 39, 94–100. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Liu, X.; Lei, Y.; Regenstein, J.M.; Luo, Y. Characterization of the microbial composition and quality of lightly salted grass carp (Ctenopharyngodon idellus) fillets with vacuum or modified atmosphere packaging. Int. J. Food Microbiol. 2019, 293, 87–93. [Google Scholar] [CrossRef]
- Lázaro, C.A.; Monteiro, M.L.G.; Conte-Junior, C.A. Combined effect of modified atmosphere packaging and UV-C radiation on pathogens reduction, biogenic amines, and shelf life of refrigerated tilapia (Oreochromis niloticus) Fillets. Molecules 2020, 25, 3222. [Google Scholar] [CrossRef]
- Olatunde, O.O.; Benjakul, S.; Vongkamjan, K. Comparative study on nitrogen and argon-based modified atmosphere packaging on microbiological, chemical, and sensory attributes as well as on microbial diversity of Asian sea bass. Food Packag. Shelf Life 2019, 22, 100404. [Google Scholar] [CrossRef]
- Wang, Z.C.; Yan, Y.; Fang, Z.; Nisar, T.; Sun, L.; Guo, Y.; Xia, N.; Wang, H.; Chen, D.W. Application of nitric oxide in modified atmosphere packaging of tilapia (Oreschromis niloticus) fillets. Food Control 2019, 98, 209–215. [Google Scholar] [CrossRef]
- Esteves, E.; Guerra, L.; Aníbal, J. Effects of vacuum and modified atmosphere packaging on the quality and shelf-life of gray triggerfish (Balistes capriscus) fillets. Foods 2021, 10, 250. [Google Scholar] [CrossRef] [PubMed]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.J. Colour measurement and analysis in fresh and processed foods: A review. Food Bioproc. Tech. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Chen, L.; Opara, U.L. Texture measurement approaches in fresh and processed foods—A review. Food Res. Int. 2013, 51, 823–835. [Google Scholar] [CrossRef]
- Chen, L.; Opara, U.L. Approaches to analysis and modeling texture in fresh and processed foods–A review. J. Food Eng. 2013, 119, 497–507. [Google Scholar] [CrossRef]
- Cheng, J.; Sun, D.W.; Zeng, X.A.; Liu, D. Recent advances in methods and techniques for freshness quality determination and evaluation of fish and fish fillets: A review. Crit. Rev. Food Sci. Nutr. 2014, 13, 52–61. [Google Scholar] [CrossRef]
- Goulas, A.E.; Kontominas, M.G. Combined effect of light salting, modified atmosphere packaging and oregano essential oil on the shelf-life of sea bream (Sparus aurata): Biochemical and sensory attributes. Food Chem. 2007, 100, 287–296. [Google Scholar] [CrossRef]
- Da Silva, N.; Taniwaki, M.H.; Junqueira, V.C.; Silveira, N.; Do Nascimento, M.D.S.; Gomes, R.A.R. Microbiological Examination Methods of Food and Water. A Laboratory Manual; CRC Press: Washington, DC, USA, 2012. [Google Scholar]
- SANS. Method 4833. Microbiology: General Guidance for the Enumeration of Microorganisms—Colony Count Technique at 30 °C, 2nd ed.; South African Bureau of Standards: Pretoria, South Africa, 2007. [Google Scholar]
- Hara-Kudo, Y.; Sugiyama, K.; Nishibuchi, M.; Chowdhury, A.; Yatsuyanagi, J.; Ohtomo, Y.; Kumagai, S. Prevalence of pandemic thermo stable direct haemolysin-producing Vibrio parahaemolyticus O3: K6 in seafood and the coastal environment in Japan. J. Appl. Environ. Microbiol. 2003, 69, 3883–3891. [Google Scholar] [CrossRef] [Green Version]
- ISO 21528-2; Microbiology of Food and Animal Feeding Stuffs Horizontal Methods for the Detection and Enumeration of Enterobacteriaceae—Part 2: Colony Count Method. 1st ed. International Organization for Standardization: Geneva, Switzerland, 2004.
- ISO/TS 21872-1; Microbiology of Food and Animal Feeding Stuffs. Horizontal Method for the Detection of Potentially Entero-Pathogenic Vibrio spp. Part 1: Detection of Vibrio parahaemolyticus and Vibrio cholera. International Organization for Standardization: Geneva, Switzerland, 2007.
- AOAC International. Official Methods of Analysis, 18th ed.; Current through revision 2, 2007 (Online). Method 960.52 (Micro-Kjeldahl method) and Method 981.10 (crude protein in meat and meat products); The Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2007. [Google Scholar]
- AOAC International—Association of Official Analytical Chemists. Official Methods of Analysis, 17th ed.; AOAC International: Arlington, VA, USA, 2000. [Google Scholar]
- AOAC International. Loss on drying (moisture) at 95–100 °C for feeds. In Official Methods of Analysis, 17th ed.; AOAC Official Method 934.01; Association of Official Analytical Chemists Inc.: Arlington, VA, USA, 2002. [Google Scholar]
- AOAC International. Ash of Animal Feed. In Official Methods of Analysis, 17th ed.; AOAC Official Method 942.05; Association of Official Analytical Chemists Inc: Arlington, VA, USA, 2002. [Google Scholar]
- Ivanov, G.; Balev, D.; Nikolov, H.; Dragoev, S. Improvement of chilled salmon sensory quality by pulverisation with natural di-hydro-quercetin solutions. Bulg. J. Agric. Sci. 2009, 15, 154–162. [Google Scholar]
- Masniyom, P. Deterioration and shelf-life extension of fish and fishery products by modified atmosphere packaging. Songklanakarin J. Sci. Technol. 2011, 33, 181–192. [Google Scholar]
- Ruiz-Capillas, C.; Moral, A. Chilled bulk storage of gutted hake (Merluccius merluccius,) in carbon dioxide and oxygen enriched controlled atmospheres. Food Chem. 2001, 74, 317–325. [Google Scholar] [CrossRef] [Green Version]
- Sivertsvik, M.; Rosnes, J.T.; Jeksrud, W.K. Solubility and absorption rate of carbon dioxide into non-respiring foods. Part 2: Raw fish fillets. J. Food Eng. 2004, 63, 451–458. [Google Scholar] [CrossRef]
- Torrieri, E.; Cavella, S.; Villani, F.; Masi, P. Influence of modified atmosphere packaging on the chilled shelf-life of gutted farmed bass (Dicentrarchus labrax). J. Food Eng. 2006, 77, 1078–1086. [Google Scholar] [CrossRef]
- Sivertsvik, M.; Jeksrud, W.K.; Rosnes, J.T. A review of modified atmosphere packaging of fish and fishery products–significance of microbial growth, activities and safety. Int. J. Food Sci. Technol. 2002, 37, 107–127. [Google Scholar] [CrossRef]
- Cyprian, O.; Oduor-Odote, P.; Lauzon, H.; Martinsdottir, E.; Arason, S. Microbiological quality and shelf life of fresh packaged tilapia fillets stored under different chill temperatures. J. Microbiol. Biotechnol. Food Sci. 2013, 2, 2431–2455. [Google Scholar]
- Wang, T.; Sveinsdottir, K.; Magnusson, H.; Martinsdottir, E. Combined application of modified atmosphere packaging and super-chilled storage to extend the shelf life of fresh cod (Gadus morhua) loins. J. Food Sci. 2008, 73, 11–19. [Google Scholar] [CrossRef]
- Stamatis, N.; Arkoudelos, J. Quality assessment of Scomber colias japonicas under modified atmosphere and vacuum packaging. Food Control 2007, 18, 292–300. [Google Scholar] [CrossRef]
- Careche, M.; Del Mazo, M.L.; Fernandez-Martín, F. Extractability and thermal stability of frozen hake (Merluccius merluccius) fillets stored at −10 °C and −30 °C. J. Sci. Food Agric. 2002, 1791–1799. [Google Scholar] [CrossRef]
- Pacheco-Aguilar, R.; Lugo-Sanchez, M.E.; Robles-Burgueno, M.R. Post-mortem biochemical and functional characteristic of Monterey sardine muscle stored at 0 °C. J. Food Sci. 2000, 65, 40–47. [Google Scholar] [CrossRef]
- Fletcher, G.C.; Summers, G.; Corrigan, V.K.; Johanson, M.R.; Hedderley, D. Optimizing gas mixtures for modified atmosphere packaging of fresh king salmon (Oncorhynchus tshawytscha). J. Aquat. Food Prod. Technol. 2004, 13, 5–28. [Google Scholar] [CrossRef]
- Soccol, M.H.; Oetterer, M. Use of modified atmosphere in seafood preservation. Braz. Arch. Biol. Technol. 2003, 46, 569–580. [Google Scholar] [CrossRef] [Green Version]
- Ayala, M.D.; Santaella, M.; Martınez, C.; Periago, M.J.; Blanco, A.; Vazquez, J.M.; Albors, O.L. Muscle tissue structural changes and texture development in sea bream (Sparus aurata) during post-mortem storage. LWT Food Sci. Technol. 2010, 43, 465–475. [Google Scholar] [CrossRef]
- Roth, B.; Birkeland, S.; Oyarzun, F. Stunning, pre slaughter and filleting conditions of Atlantic salmon and subsequent effect on flesh quality on fresh and smoked fillets. Aquaculture 2009, 289, 350–356. [Google Scholar] [CrossRef]
- Duun, A.S.; Rustad, T. Quality of super-chilled vacuum-packed Atlantic salmon (Salmo salar) fillets stored at −1.4 and −3.6 °C. Food Chem. 2008, 106, 122–131. [Google Scholar] [CrossRef]
- Hultmann, L.; Rustad, T. Iced storage of Atlantic salmon (Salmo salar)—Effects on endogenous enzymes and their impact on muscle proteins and texture. Food Chem. 2004, 87, 31–41. [Google Scholar] [CrossRef]
- Regost, C.; Jakobsen, J.V.; Rora, A.M.B. Flesh quality of raw and smoked fillets of Atlantic salmon as influenced by dietary oil sources and frozen storage. Food Res. Int. 2004, 37, 259–271. [Google Scholar] [CrossRef]
- Mancini, R.A.; Hunt, M.C. Current research in meat colour. Meat Sci. 2005, 71, 100–121. [Google Scholar] [CrossRef]
- Sone, I.; Olsen, R.L.; Heia, K. Spectral changes of Atlantic salmon (Salmo salar) muscle during cold storage as affected by the oxidation state of heme. J. Agric. Food Chem. 2012, 60, 9719–9726. [Google Scholar] [CrossRef]
- Chaijan, M.; Benjakul, S.; Visessanguan, W.; Faustman, C. Changes of pigments and colour in sardine (Sardinella gibbosa) and mackerel (Rastrelliger kanagurta) muscle during iced storage. Food Chem. 2005, 93, 607–617. [Google Scholar] [CrossRef]
- HPA—Health Protection Agency. Guidelines for Assessing the Microbiological Safety of Ready-to-Eat Foods; Health Protection Agency: London, UK, 2009. [Google Scholar]
- Arashisar, S.; Hisar, O.; Kaya, M.; Yanik, T. Effects of modified atmosphere and vacuum packaging on microbiological and chemical properties of rainbow trout (Oncorynchus mykiss) fillets. Int. J. Food Microbiol. 2004, 97, 209–214. [Google Scholar] [CrossRef] [PubMed]
Storage Days | TEMP. (°C) | MAP − PAD | MAP + PAD | PMAP − PAD | PMAP + PAD |
---|---|---|---|---|---|
0 | - | 5.7 ± 0.013 n | 5.7 ± 0.013 n | 5.7 ± 0.013 n | 5.7 ± 0.013 n |
3 | 0 | 5.8 ± 0.004 m | 5.7 ± 0.006 n | 6.1 ± 0.004 j | 5.9 ± 0.004 l |
4 | 6.1 ± 0.009 j | 5.9 ± 0.006 l | 7.2 ± 0.006 e | 7.1 ± 0.003 f | |
8 | 7.4 ± 0.004 d | 7.1 ± 0.005 f | 8.2 ± 0.005 a | 8.1 ± 0.004 b | |
6 | 0 | 6.0 ± 0.006 k | 6.0 ± 0.006 k | 7.9 ± 0.013 c | 7.9 ± 0.013 c |
4 | 6.4 ± 0.006 g | 6.3 ± 0.006 h | nd | nd | |
9 | 0 | 6.2 ± 0.010 l | 6.1 ± 0.003 j | nd | nd |
4 | 6.4 ± 0.012 g | 6.3 ± 0.005 h | nd | nd | |
12 | 0 | 6.2 ± 0.004 i | 6.1 ± 0.004 j | nd | nd |
4 | 6.4 ± 0.005 g | 6.3 ± 0.006 h | nd | nd | |
15 | 0 | 6.2 ± 0.004 i | 6.1 ± 0.004 j | nd | nd |
Storage (Days) | TEMP. (°C) | Treatment | - | Appearance | - | Odor | - | - |
---|---|---|---|---|---|---|---|---|
- | Color | Watery Discharge | Firmness | Fish Freshness | Not Fermenting | Overall Acceptability | ||
3 | 0 | MAP − PAD | 4.70 ± 0.48 b | 2.50 ± 0.53 g | 4.40 ± 0.52 b | 4 80 ± 0.42 b | 4.50 ± 0.53 b | 4.18 ± 0.05 b |
MAP + PAD | 5.00 ± 0.01 a | 5.00 ± 0.01 a | 5.00 ± 0.01 a | 4.90 ± 0.32 a | 5.00± 0.01 a | 4.98 ± 0.14 a | ||
PMAP − PAD | 3.90 ± 0.32 d | 4.10 ± 0.32 c | 2.20 ± 0.63 e | 3.40 ± 0.52 e | 3.20 ± 0.42 e | 3.36 ± 0.14 d | ||
PMAP + PAD | 4.50 ± 0.53 c | 4.80 ± 0.42 b | 3.40 ± 0.52 c | 4.30 ± 0.48 c | 3.60 ± 0.52 c | 4.12 ± 0.04 c | ||
4 | MAP − PAD | 2.60 ± 0.70 f | 1.70 ± 0.48 i | 2.50 ± 0.53 d | 2 80± 0.63 d | 3.00± 0.47 f | 2.52 ± 0.10 f | |
MAP + PAD | 2.90 ± 0.57 e | 3.90 ± 0.57 d | 2.50 ± 0.53 d | 3.80 ± 0.63 d | 3.50± 0.53 d | 3.32 ± 0.04 e | ||
PMAP − PAD | 1.50 ± 0.53 h | 2.50 ± 0.85 g | 1.60 ± 0.52 h | 2.70 ± 0.48 | 2.50 ± 0.53 h | 2.16 ± 0.15 h | ||
PMAP + PAD | 1.40 ± 0.70 i | 2.30 ± 0.48 h | 2.00 ± 0.67 f | 3.00 ± 0.67 f | 2.80 ± 0.42 g | 2.30 ± 0.13 g | ||
8 | MAP − PAD | 1.00 ± 0.01 k | 1.60 ± 0.32 j | 1.50 ± 0.71 i | 1.20 ± 0.42 h | 1.00 ± 0.32 j | 1.26 ± 0.25 l | |
MAP + PAD | 1.90 ± 0.91 g | 2.30 ± 0.82 h | 1.80 ± 0.79 g | 1.40 ± 0.52 g | 1 00± 0.32 j | 1.70 ± 0.30 i | ||
PMAP − PAD | 1.00 ± 0.01 k | 2.20 ± 0.63 f | 1.00 ± 0.67 k | 1.00 ± 0.01 j | 1.00 ± 0.01 j | 1.24 ± 0.36 k | ||
PMAP + PAD | 1.30 ± 0.82 j | 3.30 ± 0.48 e | 1.20 ± 0.42 j | 1.10 ± 0.32 i | 1.10 ± 0.32 i | 1.60 ± 0.21 j | ||
6 | 0 | MAP − PAD | 3.70 ± 0.48 b | 2.10 ± 0.74 e | 3.70 ± 0.67 b | 4 50 ± 0.53 b | 4.70 ± 0.48 b | 3.74 ± 0.12 b |
MAP + PAD | 4.10 ± 0.57 a | 4.80 ± 0.42 a | 4.70 ± 0.48 a | 4.60 ± 0.52 a | 4.80± 0.42 a | 4.60 ± 0.06 a | ||
PMAP − PAD | 2.80 ± 0.67 d | 3.30 ± 0.67 c | 1.40 ± 0.52 f | 1.80 ± 0.42 f | 1.70 ± 0.68 f | 2.20 ± 0.11 f | ||
PMAP + PAD | 3.30 ± 0.48 c | 4.10 ± 0.57 b | 2.20 ± 0.42 d | 2.20 ± 0.42 e | 1.80 ± 0.42 e | 2.72 ± 0.06 d | ||
4 | MAP − PAD | 2.40 ± 0.52 e | 1.70 ± 0.68 f | 2.10 ± 0.57 e | 2 40± 0.52 d | 2.60± 0.52 d | 2.24± 0.07 e | |
MAP + PAD | 2.40 ± 0.52 e | 3.20 ± 0.42 d | 2.30 ± 0.48 c | 3 20± 0.42 c | 2.90± 0.32 c | 2.80 ± 0.08 c | ||
12 | 0 | MAP − PAD | 2.30 ± 0.48 b | 1.50 ± 0.85 c | 2.60± 0.52 b | 2 90 ± 0.74 b | 2.80 ± 0.42 b | 2.42± 0.18 b |
MAP + PAD | 2.60 ± 0.52 a | 3.10 ± 0.32 d | 3.20 ± 0.42 a | 3.10 ± 0.32 a | 3 10± 0.32 a | 3.02 ± 0.09 a | ||
4 | MAP − PAD | 1.00 ± 0.01 d | 1.00 ± 0.01 e | 1.10± 0.03 d | 1 40 ± 0.52 d | 1.30 ± 0.48 d | 1.16± 0.25 d | |
MAP + PAD | 1.20 ± 0.42 c | 2.40 ± 0.70 b | 1.30 ± 0.70 c | 2 00± 0.01 c | 1.90± 0.32 c | 1.76 ± 0.26 c |
Variables | pH | WS | DL | TCD | O2 | CO2 | AMC | Color | Exudate | Firmness | Freshness | Fresh Odor | OA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 1 | - | - | - | - | - | - | - | - | - | - | - | - |
- | - | - | - | - | - | - | - | - | - | - | - | ||
WS | −0.40 | 1 | - | - | - | - | - | - | - | - | - | - | - |
Drip loss | 0.19 | −0.194 | 1 | - | - | - | - | - | - | - | - | - | - |
TCD | 0.43 | −0.34 | 0.22 | 1 | - | - | - | - | - | - | - | - | - |
O2 | −0.27 | 0.77 | 0.07 | −0.36 | 1 | - | - | - | - | - | - | - | - |
CO2 | −0.25 | 0.17 | 0.29 | 0.37 | 0.36 | 1 | - | - | - | - | - | - | - |
AMC | 0.52 | −0.62 | 0.07 | 0.61 | −0.77 | −0.78 | 1 | - | - | - | - | - | - |
Color | −0.43 | 0.54 | −0.27 | −0.78 | 0.44 | −0.24 | −0.70 | 1 | - | - | - | - | - |
Exudate | −0.08 | 0.23 | 0.46 | −0.56 | 0.02 | 0.47 | −0.22 | 0.59 | 1 | - | - | - | - |
Firmness | −0.39 | 0.48 | −0.09 | −0.66 | 0.62 | 0.09 | −0.72 | 0.82 | 0.42 | 1 | - | - | - |
Freshness | −0.48 | 0.51 | −0.17 | −0.68 | −0.60 | 0.10 | −0.80 | 0.86 | 0.40 | 0.89 | 1 | - | - |
Fresh Odor | −0.45 | 0.51 | −0.15 | −0.65 | 0.61 | 0.15 | −0.77 | 0.82 | 0.32 | 0.90 | 0.97 | 1 | - |
OA | −0.42 | 0.52 | −0.27 | −0.76 | 0.52 | −0.09 | −0.73 | 0.94 | 0.63 | 0.92 | 0.95 | 0.920 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Opara, U.L.; Fadiji, T.; Caleb, O.J.; Oluwole, A.O. Effects of Modified Atmosphere Packaging, Storage Temperature, and Absorbent Pads on the Quality of Fresh Cape Hake Fish Fillets. Coatings 2022, 12, 310. https://doi.org/10.3390/coatings12030310
Opara UL, Fadiji T, Caleb OJ, Oluwole AO. Effects of Modified Atmosphere Packaging, Storage Temperature, and Absorbent Pads on the Quality of Fresh Cape Hake Fish Fillets. Coatings. 2022; 12(3):310. https://doi.org/10.3390/coatings12030310
Chicago/Turabian StyleOpara, Umezuruike Linus, Tobi Fadiji, Oluwafemi James Caleb, and Adebanji Olasupo Oluwole. 2022. "Effects of Modified Atmosphere Packaging, Storage Temperature, and Absorbent Pads on the Quality of Fresh Cape Hake Fish Fillets" Coatings 12, no. 3: 310. https://doi.org/10.3390/coatings12030310
APA StyleOpara, U. L., Fadiji, T., Caleb, O. J., & Oluwole, A. O. (2022). Effects of Modified Atmosphere Packaging, Storage Temperature, and Absorbent Pads on the Quality of Fresh Cape Hake Fish Fillets. Coatings, 12(3), 310. https://doi.org/10.3390/coatings12030310