The Tribotechnical Properties of Electrosparks with a Secondary Bronze Coating
Abstract
:1. Introduction
- The production of an experimental batch of secondary bronze powder from the waste of machine-building production using the method of electroerosive dispersion;
- The production of a dispersed secondary bronze powder briquette at the SPS 10-3 spark plasma sintering plant of Thermal Technology (USA), to be cut into electrodes for ES prototype samples;
- The application of electrospark coatings to prototype sample discs by electrodes from bronze of CuAl9Fe3 (CuAl8Fe3), and of electrospark coatings with electrodes from the boiled secondary SPS bronze;
- A metallographic analysis of the electrospark coatings on the prototype discs;
- Comparative tests for the wear of conjugations with the coatings produced by NUE electrodes from bronze-branded CuAl9Fe3 (CuAl8Fe3), and with the coatings of electrodes from SPS bronze.
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Burumkulov, F.H.; Ivanov, V.I.; Velichko, S.A.; Denisov, V.A. Plasticity of electro-spark copper-containing coatings. Electron. Process. Mater. 2014, 50, 6–9. [Google Scholar]
- Beilis, V.M.; Tsench, Y.S.; Korotchenya, V.M.; Starovoitov, S.I.; Kynev, N.G. Development trends of progressive machine technologies and techniques in agricultural production. Bull. VIESH 2018, 4, 150–156. [Google Scholar]
- Ignatov, V.I.; Dorokhov, A.S.; Gerasimov, V.S.; Denisov, V.A. Methodology for determining the value of the utilization fee for decommissioned self-propelled equipment. Eng. Technol. Syst. 2019, 29, 124–139. [Google Scholar] [CrossRef]
- Biryukov, V.V. Restoration of bronze parts of agricultural machines. Proc. GOSNITI 2009, 103, 141–143. [Google Scholar]
- Copper Price (LME.Copper) for the Last 3 Years. Available online: https://bhom.ru/commodities/med/?startdate=3years (accessed on 23 November 2021).
- Tin Price (LME.Tin) for the Last 3 Years. Available online: https://bhom.ru/commodities/olovo/?startdate=3years (accessed on 23 November 2021).
- LobachevskyYa, P.; Sidorov, S.A.; Mironov, D.A.; Khoroshenkov, V.K.; Vaynerman, A.E.; Pichuzhkin, S.A.; Golosienko, S.A.; Chernobaev, S.P.; Yurkov, M.A. New wear-resistant surfacing materials in agricultural engineering. Agric. Mach. Technol. 2014, 6, 27–31. [Google Scholar]
- Latypov, R.A.; Ageev, E.V.; Denisov, V.A.; Latypova, G.R. Recycling of wastes of hard alloys for the restoration and hardening of products. Monogr. Kursk. 2017, 184. [Google Scholar]
- Romanov, I.V.; Zadorozhny, R.N. Methods of obtaining metal powders for technologies of restoration and hardening of parts of agricultural machinery. Agric. Equip. Maint. Repair 2019, 11, 37–44. [Google Scholar]
- Verkhoturov, A.D.; Ivanov, V.I.; Dorokhov, A.S.; Konevtsov, L.A.; Velichko, S.A. Influence of the nature of electrode materials on erosion and properties of the alloyed layer. Evaluation criteria for electrospark alloying. Bull. Mordovian Univ. 2018, 28, 302–320. [Google Scholar] [CrossRef] [Green Version]
- Latypov, R.A.; Ageev, E.V.; Khardikov, S.V.; Denisov, V.A.; Altukhov, A. X-ray spectral microanalysis of sintered steel from powder obtained by electroerosive dispersion of steel waste ShKh15. Electrometallurgy 2017, 2, 37–40. [Google Scholar]
- Romanov, I.V.; Zadorozhny, R.N. Isolation of a finely dispersed fraction of powders obtained by the method of electroerosive dispersion. Tech. Serv. Mach. 2020, 3, 119–127. [Google Scholar]
- Syamenchik, T.A.; Matrenin, S.V. Obtaining prototypes from nanodispersed powders by the method of spark plasma sintering. In Proceedings of the Modern Problems of Mechanical Engineering, the Collection of Scientific Papers of the VII International Scientific and Technical Conference, National Research, Tomsk Polytechnic University, Tomsk, Russian, 11–13 November 2013; Arlyapova, A.Y., Kim, A.B., Eds.; pp. 131–135. [Google Scholar]
- Romanov, I.V.; Zadorozhniy, R.N. Choice of modes of electrospark treatment for electrodes from sintered bronze. Sci. Tech. Bull. Bryansk State Univ. 2021, 1, 96–106. [Google Scholar]
- Velichko, S.A.; Kravchenko, I.N.; Martynov, A.V.; Martynova, E.G. Formation of thick-layer electrospark coatings with increased contact continuity. STIN 2021, 4, 29–32. [Google Scholar]
- Reshchikov, E.O.; Romanov, I.V.; Zadorozhny, R.N. Improving the reliability of friction units made of titanium alloys. Tech. Serv. Mach. 2021, 1, 100–106. [Google Scholar]
- Zhachkin, S.Y.; Penkov, N.A.; Sidorkin, O.A.; Zadorozhny, R.N.; Strunkin, P.V. Analytical assessment of wear of the working surface of screw devices with a composite coating. Tech. Serv. Mach. 2021, 2, 151–161. [Google Scholar] [CrossRef]
- Velichko, S.A.; Sharifullin, S.N.; Kuznetsov, I.S.; Kolomeichenko, A.V.; Soloviev, R.Y.; Kravchenko, I.N.; Adigamov, N.R. Assessment of wear resistance and resource of hardened by electric spark treatment of cutting surfaces of fingers of grain harvesters headers. In Proceedings of the Innovative Machine-Building Technologies, Proceedings of the Equipment and Materials—2019 Materials of the X International Scientific and Technical Conference, Kazan, Russia, 5–6 December 2019; pp. 191–195. [Google Scholar]
- Romanov, I.V.; Zadorozhniy, R.N. Investigation of the physical and mechanical properties of bronze powders obtained by the method of electroerosive dispersion. Tech. Serv. Mach. 2020, 4, 148–156. [Google Scholar]
Name of the Parameters | Electrical Spark Treatment Plants | |
---|---|---|
Elitron-52B | Vestron AI-007 | |
Power consumption, kW | 3.5 | 1.5 |
Power grid voltage, V | 220 | 220 |
Electrode vibration frequency, Hz | 100 | 250 |
Pulse frequency, Hz | 100 | 100; 150; 300 |
Working current, A | 0.5–80 | 7.0–15 |
Number of electric modes, pieces | 12 | 24 |
Overall dimensions of the generator, mm | 650 × 600 × 1100 | 425 × 415 × 190 |
Generator mass, kg | 150 | 32 |
Electrode | Elements, % | ||||
---|---|---|---|---|---|
Al | Si | Ti | Mn | Fe | |
CuAl9Fe3 | 6.94 ± 0.38 | 0.31 ± 0.07 | – | – | 1.68 ± 0.01 |
SPS bronze | 4.42 ± 0.30 | 0.35 ± 0.057 | 0.11 ± 0.01 | 0.13 ± 0.01 | 1.41 ± 0.01 |
Electrode | S | Cu | Zn | Sn | Pb |
CuAl9Fe3 | 0.18 ± 0.05 | 90.64 ± 0.39 | – | – | – |
SPS bronze | – | 82.57 ± 0.27 | 10.21 ± 0.05 | 0.13 ± 0.01 | 0.28 ± 0.01 |
Sample View | Volume of Pores, m3/g | Pore Radius, m | |
---|---|---|---|
CuAl9Fe3 | 1.09 | 4.4 × 10−10 | 14.2 × 10−10 |
SPS bronze | 0.72 | 4.0 × 10−10 | 15.5 × 10−10 |
Electrode Material | Parameters | |||
---|---|---|---|---|
U, B | C, µF | F, Hz | Ip, A | |
CuAl9Fe3 (CuAl8Fe3) | 210 | 240 | 100 | 12 |
SPS bronze | 160 | 300 | 100 | 13 |
Material | Simultaneous Indicators for Vickers Hµ (HV) | Mean Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Electrode from SPS bronze | 95 | 77 | 90 | 101 | 106 | 117 | 75 | 87 | 94 | 85 | 93 |
Standard electrode (CuAl9Fe3) | 151 | 166 | 176 | 155 | 164 | 165 | 160 | 177 | 213 | 178 | 171 |
No. of Interfaces | Coating of the Sample Disc | Counter-Sample Material | Type of Friction | Indicator of Workability, B | Performance Indicators, P | Factor of Friction in Normal Mode, μo | ||
---|---|---|---|---|---|---|---|---|
1.1 | ES CuA19Fe3 | Steel 100Cr6 | Dry | 1.02 | 5 | 5 | 9 | 0.784 |
1.2 | ES CuA19Fe3 | Steel 100Cr6 | Dry | 1.28 | 5 | 5 | 15 | 1.561 |
1.3 | ES CuA19Fe3 | Steel 100Cr6 | Dry | 2.27 | 7 | 3 | 11 | 0.588 |
1.4 | ES CuA19Fe3 | Steel 100Cr6 | Dry | 1.02 | 5 | 5 | 9 | 0.784 |
2.1 | ES SPS bronze | Steel 100Cr6 | Dry | 2.35 | 3 | 5 | 11 | 0.681 |
2.2 | ES SPS bronze | Steel 100Cr6 | Dry | 1.91 | 7 | 3 | 13 | 1.045 |
2.3 | ES SPS bronze | Steel 100Cr6 | Dry | 3.33 | 3 | 3 | 13 | 1.001 |
2.4 | ES SPS bronze | Steel 100Cr6 | Dry | 2.35 | 3 | 5 | 11 | 0.681 |
3.1 | ES CuA19Fe3 | Steel 100Cr6 | Boundary friction | 2.31 | 3 | 13 | 40 | 1.230 |
3.2 | ES CuA19Fe3 | Steel 100Cr6 | Boundary friction | 0.42 | 5 | 25 | 40 | 3.364 |
3.3 | ES CuA19Fe3 | Steel 100Cr6 | Boundary friction | 1.10 | 5 | 15 | 40 | 2.119 |
3.4 | ES CuA19Fe3 | Steel 100Cr6 | Boundary friction | 3.21 | 5 | 9 | 40 | 1.213 |
3.5 | ES CuA19Fe3 | Steel 100Cr6 | Boundary friction | 2.31 | 3 | 13 | 40 | 1.229 |
4.1 | ES SPS bronze | Steel 100Cr6 | Boundary friction | 2.27 | 3 | 13 | 25 | 0.747 |
4.2 | ES SPS bronze | Steel 100Cr6 | Boundary friction | 0.81 | 7 | 15 | 31 | 1.969 |
4.3 | ES SPS bronze | Steel 100Cr6 | Boundary friction | 1.99 | 5 | 9 | 31 | 1.453 |
4.4 | ES SPS bronze | Steel 100Cr6 | Boundary friction | 1.99 | 5 | 9 | 31 | 1.454 |
Interfaces | Factor of Friction in Normal Mode, μo | Path of Friction, m | Linear Wear of Sample Disc m | Linear Wear of the Counter-Sample, ×10−6 m | Type of Friction | Intensity of Wear and Tear, J∑ × 10−13, m/m | Wear Factor m/mN | |
---|---|---|---|---|---|---|---|---|
1.1 | 5 | 0.784 | 5770 | 2.386 | 0.071 | Dry | 4.257 | 85.14 |
1.2 | 5 | 1.561 | 4750 | 0.585 | 0.087 | Dry | 1.414 | 28.33 |
1.3 | 3 | 0.588 | 5769 | 0.807 | 0.004 | Dry | 1.406 | 46.86 |
1.4 | 5 | 0.784 | 5286 | 2.092 | 0.389 | Dry | 4.693 | 93.86 |
2.1 | 5 | 0.681 | 6225 | 0.583 | 0.743 | Dry | 2.130 | 42.60 |
2.2 | 3 | 1.245 | 5723 | 0.601 | 0.048 | Dry | 1.135 | 37.82 |
2.3 | 3 | 1.001 | 5769 | 0.035 | 0.051 | Dry | 0.149 | 4.97 |
2.4 | 5 | 0.681 | 6225 | 1.232 | 0.547 | Dry | 2.858 | 57.15 |
3.1 | 13 | 1.230 | 5770 | 0.240 | 0.231 | Boundary friction | 0.815 | 6.29 |
3.2 | 25 | 2.120 | 5769 | 0.089 | 0.100 | Boundary friction | 0.327 | 1.31 |
3.3 | 15 | 2.120 | 5769 | 0.082 | 0.050 | Boundary friction | 0.229 | 1.52 |
3.4 | 9 | 1.213 | 5769 | 0.053 | 0.097 | Boundary friction | 0.261 | 2.90 |
3.5 | 13 | 1.230 | 5770 | 0.319 | 0.384 | Boundary friction | 1.220 | 9.38 |
4.1 | 13 | 0.747 | 6225 | 0.160 | 0.538 | Boundary friction | 1.120 | 8.62 |
4.2 | 15 | 1.969 | 5769 | 0.046 | 0.064 | Boundary friction | 0.191 | 1.27 |
4.3 | 9 | 1.453 | 5769 | 0.244 | 0.032 | Boundary friction | 0.479 | 5.32 |
4.4 | 9 | 1.452 | 5769 | 0.264 | 0.091 | Boundary friction | 0.616 | 6.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorokhov, A.S.; Denisov, V.A.; Zadorozhny, R.N.; Romanov, I.V.; Zuevskiy, V.A. The Tribotechnical Properties of Electrosparks with a Secondary Bronze Coating. Coatings 2022, 12, 312. https://doi.org/10.3390/coatings12030312
Dorokhov AS, Denisov VA, Zadorozhny RN, Romanov IV, Zuevskiy VA. The Tribotechnical Properties of Electrosparks with a Secondary Bronze Coating. Coatings. 2022; 12(3):312. https://doi.org/10.3390/coatings12030312
Chicago/Turabian StyleDorokhov, Alexey Semyonovich, Vyacheslav Alexandrovich Denisov, Roman Nikolayevich Zadorozhny, Ilya Vladimirovich Romanov, and Vitaliy Aleksandrovitch Zuevskiy. 2022. "The Tribotechnical Properties of Electrosparks with a Secondary Bronze Coating" Coatings 12, no. 3: 312. https://doi.org/10.3390/coatings12030312
APA StyleDorokhov, A. S., Denisov, V. A., Zadorozhny, R. N., Romanov, I. V., & Zuevskiy, V. A. (2022). The Tribotechnical Properties of Electrosparks with a Secondary Bronze Coating. Coatings, 12(3), 312. https://doi.org/10.3390/coatings12030312