Nanoliposome Use to Improve the Stability of Phenylethyl Resorcinol and Serve as a Skin Penetration Enhancer for Skin Whitening
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PR-NLPs
2.3. Optimization of PR-NLPs Formulation
2.3.1. Investigating a Variety of Factors That Influenced EE and Mean Size of PR-NLPs
2.3.2. Box–Behnken-RSM-Based (BBK-RSM) Optimization
2.4. Characterization of PR-NLPs
2.4.1. Transmission Electron Microscopy (TEM) Analysis
2.4.2. Atomic Force Microscopy (AFM) Analysis
2.4.3. Nanoparticle Size, Polydispersity Index (PDI), and Zeta Potential Analysis
2.4.4. High Performance Liquid Chromatography (HPLC) Measurement
2.4.5. Drug Encapsulation Efficiency (EE) and Loading Capacity (LC)
2.4.6. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
2.4.7. In Vitro Drug Release
2.5. The Photostability of PR-NLPs Study
2.6. Stability Test
2.7. Cell Culture
2.7.1. Cytotoxicity Assay in HaCaT Cells and B16F10 Cells
2.7.2. Cellular Melanin Content Assay in B16F10 Cells
2.7.3. Cellular Tyrosinase Inhibition Assay
2.7.4. Celluar Uptake Study
2.8. In Vitro Skin Permeation Study
2.9. Statistical Analysis
3. Results and Discussion
3.1. Investigating a Variety of Factors by Single-Factor Experiment
3.1.1. Effect of Lecithin Concentration on the Mean Size and EE
3.1.2. Effect of Cholesterol Content on the Mean Size and EE
3.1.3. Effect of Phenylethyl Resorcinol Content on the Mean Size and EE
3.1.4. Effect of the Volume Ratios of Nonsolvent and Solvent (NS/S) on EE and Mean Size
3.1.5. Effect of Tween 80 Content on EE, PDI, and Mean Size
3.1.6. Photostability of PR-NLPs
3.2. Optimization of PR-NLPs Using Box–Behnken Design
3.3. Characterization of PR-NLPs
3.3.1. Morphology and FTIR analysis
3.3.2. Measurements of Mean Size, PDI, Zeta Potential, EE, and LC
3.3.3. In Vitro Drug Release
3.4. Stability Test
3.5. Evaluation of Biocompatibility of PR-NLPs In Vitro
3.6. Cellular Uptake Study
3.7. Effect of PR-NLPs on Cellular Tyrosinase Activity and Melanin Production
3.8. Skin Permeation Study In Vitro
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Liu, X.; Wang, C. Status and Prospect of the Beauty and Personal Care Market in China. Dly. Chem. Sci. 2016, 1, 4. [Google Scholar]
- Marks, M.S.; Seabra, M. The melanosome: Membrane dynamics in black and white. Nat. Rev. Mol. Cell Biol. 2001, 2, 738–748. [Google Scholar] [CrossRef] [PubMed]
- Hatem, S.; El Hoffy, N.M.; Elezaby, R.S.; Nasr, M.; Kamel, A.O.; Elkheshen, S.A. Background and different treatment modalities for melasma: Conventional and nanotechnology-based approaches. J. Drug Deliv. Sci. Technol. 2020, 60, 101984. [Google Scholar] [CrossRef]
- Park, H.Y.; Kosmadaki, M.; Yaar, M.; Gilchrest, B.A. Cellular mechanisms regulating human melanogenesis. Cell. Mol. Life Sci. 2009, 66, 1493–1506. [Google Scholar] [CrossRef]
- Lee, A.-Y. Recent progress in melasma pathogenesis. Pigment Cell Melanoma Res. 2015, 28, 648–660. [Google Scholar] [CrossRef]
- Videira, I.F.D.S.; Moura, D.F.L.; Magina, S. Mechanisms regulating melanogenesis. An. Bras. Dermatol. 2013, 88, 76–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ando, H.; Kondoh, H.; Ichihashi, M.; Hearing, V.J. Approaches to Identify Inhibitors of Melanin Biosynthesis via the Quality Control of Tyrosinase. J. Investig. Dermatol. 2007, 127, 751–761. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Sil, B.C.; Kung, C.; Hadgraft, J.; Heinrich, M.; Sinko, B.; Lane, M.E. Characterization and topical delivery of phenylethyl resorcinol. Int. J. Cosmet. Sci. 2019, 41, 479–488. [Google Scholar] [CrossRef]
- Chang, T.-S. An Updated Review of Tyrosinase Inhibitors. Int. J. Mol. Sci. 2009, 10, 2440–2475. [Google Scholar] [CrossRef] [Green Version]
- Köpke, D.; Müller, R.H.; Pyo, S.M. Phenylethyl resorcinol smartLipids for skin brightening—Increased loading & chemical stability. Eur. J. Pharm. Sci. 2019, 137, 104992. [Google Scholar] [CrossRef]
- Romagnoli, C.; Baldisserotto, A.; Vicentini, C.B.; Mares, D.; Andreotti, E.; Vertuani, S.; Manfredini, S. Antidermatophytic Action of Resorcinol Derivatives: Ultrastructural Evidence of the Activity of Phenylethyl Resorcinol against Microsporum gypseum. Molecules 2016, 21, 1306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jansen, R.; Osterwalder, U.; Wang, S.Q.; Burnett, M.; Lim, H.W. Photoprotection. J. Am. Acad. Dermatol. 2013, 69, 867.e1–867.e14. [Google Scholar] [CrossRef] [PubMed]
- Amnuaikit, T.; Limsuwan, T.; Khongkow, P.; Boonme, P. Vesicular carriers containing phenylethyl resorcinol for topical delivery system; liposomes, transfersomes and invasomes. Asian J. Pharm. Sci. 2018, 13, 472–484. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.K.; Thareja, S. In vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery. Artif. Cells Nanomed. Biotechnol. 2019, 47, 524–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; del Pilar Rodriguez-Torres, M.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef] [Green Version]
- Castañeda-Reyes, E.D.; de Mejia, E.G.; Eller, F.J.; Berhow, M.A.; Perea-Flores, M.D.J.; Dávila-Ortíz, G. Liposomes Loaded with Unsaponifiable Matter from Amaranthus hypochondriacus as a Source of Squalene and Carrying Soybean Lunasin Inhibited Melanoma Cells. Nanomaterials 2021, 11, 1960. [Google Scholar] [CrossRef]
- Kwon, S.S.; Kim, S.Y.; Kong, B.J.; Kim, K.J.; Noh, G.Y.; Im, N.R.; Lim, J.W.; Ha, J.H.; Kim, J.; Park, S.N. Cell penetrating peptide conjugated liposomes as transdermal delivery system of Polygonum aviculare L. extract. Int. J. Pharm. 2015, 483, 26–37. [Google Scholar] [CrossRef]
- Kim, B.-S.; Na, Y.-G.; Choi, J.-H.; Kim, I.; Lee, E.; Kim, S.-Y.; Lee, J.-Y.; Cho, C.-W. The Improvement of Skin Whitening of Phenylethyl Resorcinol by Nanostructured Lipid Carriers. Nanomaterials 2017, 7, 241. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.; Liu, G.; Huang, Y.; Li, Y.; Xia, Q. Development of a nanostructured lipid carrier formulation for increasing photo-stability and water solubility of Phenylethyl Resorcinol. Appl. Surf. Sci. 2014, 288, 193–200. [Google Scholar] [CrossRef]
- Fan, H.; Li, Y.; Huang, Y.; Liu, G.; Xia, Q. Preparation and Evaluation of Phenylethyl Resorcinol Liposome. Integr. Ferroelectr. 2014, 151, 89–98. [Google Scholar] [CrossRef]
- Limsuwan, T.; Boonme, P.; Khongkow, P.; Amnuaikit, T. Ethosomes of Phenylethyl Resorcinol as Vesicular Delivery System for Skin Lightening Applications. BioMed Res. Int. 2017, 2017, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Limsuwan, T.; Boonme, P.; Amnuaikit, T. Enhanced stability of phenylethyl resorcinol in elastic vesicular formulations. Trop. J. Pharm. Res. 2019, 17, 1895. [Google Scholar] [CrossRef]
- Raknam, P.; Pinsuwan, S.; Amnuaikit, T. Phenylethyl Resorcinol Loaded in Liposomal Cream Formulation for Cosmeceutical Application. J. Pharm. Res. Int. 2020, 32, 64–76. [Google Scholar] [CrossRef] [Green Version]
- Verma, D.D.; Verma, S.; Blume, G.; Fahr, A. Particle size of liposomes influences dermal delivery of substances into skin. Int. J. Pharm. 2003, 258, 141–151. [Google Scholar] [CrossRef]
- Chirio, D.; Gallarate, M.; Trotta, M.; Carlotti, M.E.; Gaudino, E.C.; Cravotto, G. Influence of α- and γ- cyclodextrin lipophilic derivatives on curcumin-loaded SLN. J. Incl. Phenom. Macrocycl. Chem. 2009, 65, 391–402. [Google Scholar] [CrossRef]
- Malinovskaja-Gomez, K.; Espuelas, S.; Garrido, M.; Hirvonen, J.; Laaksonen, T. Comparison of liposomal drug formulations for transdermal iontophoretic drug delivery. Eur. J. Pharm. Sci. 2017, 106, 294–301. [Google Scholar] [CrossRef]
- Gouda, A.; Sakr, O.S.; Nasr, M.; Sammour, O. Ethanol injection technique for liposomes formulation: An insight into development, influencing factors, challenges and applications. J. Drug Deliv. Sci. Technol. 2021, 61, 102174. [Google Scholar] [CrossRef]
- Ltd, P.P. The Mechanism of Vesicle Formation. Biochem. J. 1989, 256, 1–11. [Google Scholar]
- Dillon, C.; Hughes, H.; O’reilly, N.J.; McLoughlin, P. Formulation and characterisation of dissolving microneedles for the transdermal delivery of therapeutic peptides. Int. J. Pharm. 2017, 526, 125–136. [Google Scholar] [CrossRef]
- Panahi, Y.; Farshbaf, M.; Mohammadhosseini, M.; Mirahadi, M.; Khalilov, R.; Saghfi, S.; Akbarzadeh, A. Recent advances on liposomal nanoparticles: Synthesis, characterization and biomedical applications. Artif. Cells Nanomed. Biotechnol. 2017, 45, 788–799. [Google Scholar] [CrossRef] [Green Version]
- Decker, C.; Fahr, A.; Kuntsche, J.; May, S. Selective partitioning of cholesterol and a model drug into liposomes of varying size. Chem. Phys. Lipids 2012, 165, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Xu, S.; Xia, S.; Zhang, X. Preparation of salidroside nano-liposomes by ethanol injection method and in vitro release study. Eur. Food Res. Technol. 2008, 227, 167–174. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaafar-Maalej, C.; Diab, R.; Andrieu, V.; Elaissari, A.; Fessi, H. Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation. J. Liposome Res. 2009, 20, 228–243. [Google Scholar] [CrossRef]
- Xia, S.; Xu, S. Ferrous sulfate liposomes: Preparation, stability and application in fluid milk. Food Res. Int. 2005, 38, 289–296. [Google Scholar] [CrossRef]
- Ghadi, Z.S.; Dinarvand, R.; Asemi, N.; Amiri, F.T.; Ebrahimnejad, P. Preparation, characterization and in vivo evaluation of novel hyaluronan containing niosomes tailored by Box-Behnken design to co-encapsulate curcumin and quercetin. Eur. J. Pharm. Sci. 2019, 130, 234–246. [Google Scholar] [CrossRef]
- Antimisiaris, S.G.; Marazioti, A.; Kannavou, M.; Natsaridis, E.; Gkartziou, F.; Kogkos, G.; Mourtas, S. Overcoming barriers by local drug delivery with liposomes. Adv. Drug Deliv. Rev. 2021, 174, 53–86. [Google Scholar] [CrossRef]
- Large, D.E.; Abdelmessih, R.G.; Fink, E.A.; Auguste, D.T. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv. Drug Deliv. Rev. 2021, 176, 113851. [Google Scholar] [CrossRef]
- Karim, N.; Shishir, M.R.I.; Chen, W. Surface decoration of neohesperidin-loaded nanoliposome using chitosan and pectin for improving stability and controlled release. Int. J. Biol. Macromol. 2020, 164, 2903–2914. [Google Scholar] [CrossRef]
- Sharma, A. Liposomes in drug delivery: Progress and limitations. Int. J. Pharm. 1997, 154, 123–140. [Google Scholar] [CrossRef]
- Smistad, G.; Bøyum, S.; Alund, S.J.; Samuelsen, A.B.C.; Hiorth, M. The potential of pectin as a stabilizer for liposomal drug delivery systems. Carbohydr. Polym. 2012, 90, 1337–1344. [Google Scholar] [CrossRef] [PubMed]
- Doktorovova, S.; Souto, E.B.; Silva, A.M. Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers—A systematic review of in vitro data. Eur. J. Pharm. Biopharm. 2014, 87, 1–18. [Google Scholar] [CrossRef] [PubMed]
- How, C.W.; Rasedee, A.; Manickam, S.; Rosli, R. Tamoxifen-loaded nanostructured lipid carrier as a drug delivery system: Characterization, stability assessment and cytotoxicity. Colloids Surf. B Biointerfaces 2013, 112, 393–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, S.-J.; Chen, M.; Wang, H.; Kang, M.S.; Leong, K.W.; Kim, H.-W. Extra- and intra-cellular fate of nanocarriers under dynamic interactions with biology. Nano Today 2017, 14, 84–99. [Google Scholar] [CrossRef]
- Han, F.; Luo, D.; Qu, W.; Chen, D.; Hong, Y.; Sheng, J.; Yang, X.; Liu, W. Nanoliposomes codelivering bioactive peptides produce enhanced anti-aging effect in human skin. J. Drug Deliv. Sci. Technol. 2020, 57, 101693. [Google Scholar] [CrossRef]
- Chacko, I.A.; Ghate, V.M.; Dsouza, L.; Lewis, S.A. Lipid vesicles: A versatile drug delivery platform for dermal and transdermal applications. Colloids Surfaces B Biointerfaces 2020, 195, 111262. [Google Scholar] [CrossRef]
No. | Lecithin Concentration (mg/mL) | Cholesterol Content (w/w %) a | Phenethyl Resorcinol Content (w/w %) a | Vesicle Size (nm) b |
---|---|---|---|---|
1 | 50 | 17.5 | 15 | 129.7 ± 0.8 |
2 | 60 | 10 | 15 | 151.8 ± 2.5 |
3 | 50 | 10 | 20 | 128.9 ± 0.2 |
4 | 50 | 17.5 | 15 | 133.3 ± 0.9 |
5 | 50 | 17.5 | 15 | 132.4 ± 1.1 |
6 | 50 | 17.5 | 15 | 124.8 ± 0.8 |
7 | 40 | 25 | 15 | 158.2 ± 0.4 |
8 | 50 | 17.5 | 20 | 195.2 ± 7.0 |
9 | 50 | 17.5 | 10 | 117.3 ± 2.1 |
10 | 50 | 10 | 10 | 88.61 ± 0.8 |
11 | 40 | 17.5 | 20 | 157.6 ± 1.2 |
12 | 50 | 25 | 15 | 171.6 ± 1.6 |
13 | 40 | 17.5 | 10 | 111.8 ± 0.3 |
14 | 40 | 10 | 15 | 108.4 ± 1.4 |
15 | 50 | 25 | 20 | 165.8 ± 3.2 |
16 | 50 | 25 | 10 | 106.2 ± 1.7 |
17 | 50 | 17.5 | 5 | 116.7 ± 0.8 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 11,997.55 | 9 | 1333.06 | 31.06 | <0.0001 |
A | 1248.33 | 1 | 1248.33 | 29.09 | 0.001 |
B | 1821.66 | 1 | 1821.66 | 42.45 | 0.0003 |
C | 6436.59 | 1 | 6436.59 | 149.99 | <0.0001 |
AB | 178.22 | 1 | 178.22 | 4.15 | 0.081 |
AC | 206.88 | 1 | 206.88 | 4.82 | 0.0641 |
BC | 93.9 | 1 | 93.9 | 2.19 | 0.1826 |
A2 | 1967.65 | 1 | 1967.65 | 45.85 | 0.0003 |
B2 | 1.76 | 1 | 1.76 | 0.041 | 0.8454 |
C2 | 80.13 | 1 | 80.13 | 1.87 | 0.2141 |
Residual | 300.39 | 1 | 42.91 | - | - |
Pure Error | 185.64 | 7 | 46.41 | - | - |
Corr. Total | 12,297.95 | 4 | - | - | - |
R2 | 0.9756 | 16 | - | - | - |
C.V.% | 4.85 | - | - | - | |
Adeq Precisor | 21.679 | - | - | - | - |
Group | Size (nm) | Zeta Potential (mV) | PDI | EE (%) | LC (%) |
---|---|---|---|---|---|
Blank-NLPs | 106.0 ± 1.9 | −27.9 ± 1.16 | 0.276 ± 0.02 | - | - |
PR-NLPs | 130 ± 3.5 | −43.9 ± 3.44 | 0.225 ± 0.02 | 96.81 ± 3.46 | 8.82 ± 0.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, H.; Tang, Y.; Huang, R.; Liang, J.; Ma, S.; Chen, D.; Feng, Y.; Lei, Y.; Zhang, Q.; Yang, Y.; et al. Nanoliposome Use to Improve the Stability of Phenylethyl Resorcinol and Serve as a Skin Penetration Enhancer for Skin Whitening. Coatings 2022, 12, 362. https://doi.org/10.3390/coatings12030362
Xia H, Tang Y, Huang R, Liang J, Ma S, Chen D, Feng Y, Lei Y, Zhang Q, Yang Y, et al. Nanoliposome Use to Improve the Stability of Phenylethyl Resorcinol and Serve as a Skin Penetration Enhancer for Skin Whitening. Coatings. 2022; 12(3):362. https://doi.org/10.3390/coatings12030362
Chicago/Turabian StyleXia, Huan, Yan Tang, Rufei Huang, Jinlian Liang, Siying Ma, Derong Chen, Yuqing Feng, Yaling Lei, Qi Zhang, Yan Yang, and et al. 2022. "Nanoliposome Use to Improve the Stability of Phenylethyl Resorcinol and Serve as a Skin Penetration Enhancer for Skin Whitening" Coatings 12, no. 3: 362. https://doi.org/10.3390/coatings12030362
APA StyleXia, H., Tang, Y., Huang, R., Liang, J., Ma, S., Chen, D., Feng, Y., Lei, Y., Zhang, Q., Yang, Y., & Huang, Y. (2022). Nanoliposome Use to Improve the Stability of Phenylethyl Resorcinol and Serve as a Skin Penetration Enhancer for Skin Whitening. Coatings, 12(3), 362. https://doi.org/10.3390/coatings12030362