Partitional Behavior of Janus Dumbbell Microparticles in a Polyethylene Glycol (PEG)-Dextran (DEX) Aqueous Two-Phase System (ATPS)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the ATPS Solutions
2.3. Preparation of Janus Particles in ATPS
2.4. Partition Observation of Janus Particles with SEM Characterization
3. Results and Discussion
3.1. Janus Dumbbell-like Microparticles and Partition Factors of ATPS
3.2. EDC Coupling Reaction to Form Janus Dumbbell-like Microparticles
3.3. Partitioning of Carboxyl PS Microbeads in PEG-DEX ATPS
3.4. Partitioning of PS-Silica Dumbbell Microbeads in PEG-DEX ATPS
3.5. Partitioning of Amino-Silica Microbeads in PEG-DEX ATPS
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Walther, A.; Müller, A.H.E. Janus Particles: Synthesis, Self-Assembly, Physical Properties, and Applications. Chem. Rev. 2013, 113, 5194–5261. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Grzybowski, B.A.; Granick, S. Janus Particle Synthesis, Assembly, and Application. Langmuir 2017, 33, 6964–6977. [Google Scholar] [CrossRef] [PubMed]
- Le, T.C.; Zhai, J.; Chiu, W.-H.; Tran, P.A.; Tran, N. Janus Particles: Recent Advances in the Biomedical Applications. Int. J. Nanomed. 2019, 14, 6749–6777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, J.; Zhou, S.; Sun, Y.; Fang, X.; Wu, L. Fabrication, properties and applications of Janus particles. Chem. Soc. Rev. 2012, 41, 4356–4378. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.F.B.; Coutinho, J.A.P. Chapter 5 Aqueous Two-Phase Systems in Liquid-Phase Extraction; Poole, C.F., Ed.; Elsevier: Amsterdam, The Nederlands, 2020; pp. 157–182. [Google Scholar]
- Iqbal, M.; Tao, Y.; Xie, S.; Zhu, Y.; Chen, D.; Wang, X.; Huang, L.; Peng, D.; Satter, A.; Shabbir, M.A.B.; et al. Aqueous two-phase system (ATPS): An overview and advances in its applications. Biol. Proced. Online 2016, 18, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nouri, M.; Shahriari, S.; Pazuki, G. Increase of vanillin partitioning using aqueous two phase system with promising nanoparticles. Sci. Rep. 2009, 9, 19665. [Google Scholar] [CrossRef] [Green Version]
- Amid, M.; Manap, M.Y.; Hussin, M.; Mustafa, S. A Novel Aqueous Two Phase System Composed of Surfactant and Xylitol for the Purification of Lipase from Pumpkin (Cucurbita moschata) Seeds and Recycling of Phase Components. Molecules 2015, 20, 11184–11201. [Google Scholar] [CrossRef] [Green Version]
- Chiu, R.Y.T.; Thach, A.V.; Wu, C.M.; Wu, B.M.; Kamei, D.T. An Aqueous Two-Phase System for the Concentration and Extraction of Proteins from the Interface for Detection Using the Lateral-Flow Immunoassay. PLoS ONE 2015, 10, e0142654. [Google Scholar] [CrossRef]
- Long, M.S.; Keating, C.D. Nanoparticle Conjugation Increases Protein Partitioning in Aqueous Two-Phase Systems. Anal. Chem. 2006, 78, 379–386. [Google Scholar] [CrossRef]
- Helfrich, M.R.; El-Kouedi, M.; Etherton, M.R.; Keatings, C.D. Partitioning and Assembly of Metal Particles and Their Bioconjugates in Aqueous Twos-Phase Systems. Langmuir 2005, 21, 8478–8486. [Google Scholar] [CrossRef]
- Shankar, P.D.; Shobana, S.; Karuppusamy, I.; Pugazhendhi, A.; Ramkumar, V.S.; Arvindnarayan, S.; Kumar, G. A review on the biosynthesis of metallic nanoparticles (gold and silver) using bio-components of microalgae: Formation mechanism and applications. Enz. Microbial. Technol. 2016, 95, 28–44. [Google Scholar] [CrossRef] [PubMed]
- Innes-Gold, S.N.; Luby, C.J.; Mace, C.R. Experimental and Theoretical Validation of System Variables That Control the Position of Particles at the Interface of Immiscible Liquids. Langmuir 2018, 34, 7673–7680. [Google Scholar] [CrossRef] [PubMed]
- Park, B.J.; Lee, D. Equilibrium Orientation of Nonspherical Janus Particles at Fluid-Fluid Interfaces. ACS Nano 2012, 6, 782–790. [Google Scholar] [CrossRef]
- Yang, T.; Wei, L.; Jing, L.; Liang, J.; Zhang, X.; Tang, M.; Monteiro, M.J.; Chen, Y.; Wang, Y.; Gu, S.; et al. Dumbbell-Shaped Bi-component Mesoporous Janus Solid Nanoparticles for Biphasic Interface Catalysis. Angew. Chem. Int. Ed. 2017, 56, 8459–8463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.; Carney, R.P.; Reguera, J.; Ong, Q.K.; Liu, X.; Stellaci, F. Synthesis and Characterization of Janus Gold Nanoparticles. Adv. Mater. 2012, 24, 3857–3863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byun, C.K.; Hwang, H.; Choi, W.S.; Yaguchi, T.; Park, J.; Kim, D.; Mitchell, R.J.; Kim, T.; Cho, Y.-K.; Takayama, S. Productive Chemical Interaction between a Bacterial Microcolony Couple Is Enhanced by Periodic Relocation. J. Am. Chem. Soc. 2013, 135, 2242–2247. [Google Scholar] [CrossRef]
- Byun, C.K.; Kim, M.; Kim, D. Modulating the Partitioning of Microparticles in a Polyethylene Glycol (PEG)-Dextran (DEX) Aqueous Biphasic System by Surface Modification. Coatings 2018, 8, 85. [Google Scholar] [CrossRef] [Green Version]
- Valeur, E.; Bradley, M. Amide bond formation: Beyond the myth of coupling reagents. Chem. Soc. Rev. 2009, 38, 606–631. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, W.; Tan, W. Bioconjugated Silica Nanoparticles: Development and Applications. Nano. Res. 2008, 1, 99–115. [Google Scholar] [CrossRef] [Green Version]
- Tan, W.; Wang, K.; He, X.; Zhao, X.J.; Drake, T.; Wang, L.; Bagwe, R.P. Bionanotechnology Based on Silica Nanoparticles. Med. Res. Rev. 2004, 24, 621–638. [Google Scholar] [CrossRef]
- Yang, S.; Guo, F.; Kiraly, B.; Mao, X.; Lu, M.; Leong, K.W.; Huang, T.J. Microfluidic synthesis of multifunctional Janus particles for biomedical applications. Lab Chip 2012, 12, 2097–2102. [Google Scholar] [CrossRef] [PubMed]
- De Bo, G.; Gall, M.A.Y.; Kuschel, S.; De Winter, J.; Gerbaux, P.; Leigh, D.A. An artificial molecular machine that builds an asymmetric catalyst. Nat. Nanotechnol. 2018, 13, 381–385. [Google Scholar] [CrossRef] [PubMed]
Particle Type | Density (g/cm3) | Shape | Size (μm) | Functionalized Group |
---|---|---|---|---|
Polystyrene (PS) | 1.05 | Spherical, non-porous | 2.17 | Carboxyl |
Silica | 1.96 | Spherical, non-porous | 3.0 | Amino |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Byun, C.K. Partitional Behavior of Janus Dumbbell Microparticles in a Polyethylene Glycol (PEG)-Dextran (DEX) Aqueous Two-Phase System (ATPS). Coatings 2022, 12, 415. https://doi.org/10.3390/coatings12030415
Byun CK. Partitional Behavior of Janus Dumbbell Microparticles in a Polyethylene Glycol (PEG)-Dextran (DEX) Aqueous Two-Phase System (ATPS). Coatings. 2022; 12(3):415. https://doi.org/10.3390/coatings12030415
Chicago/Turabian StyleByun, Chang Kyu. 2022. "Partitional Behavior of Janus Dumbbell Microparticles in a Polyethylene Glycol (PEG)-Dextran (DEX) Aqueous Two-Phase System (ATPS)" Coatings 12, no. 3: 415. https://doi.org/10.3390/coatings12030415
APA StyleByun, C. K. (2022). Partitional Behavior of Janus Dumbbell Microparticles in a Polyethylene Glycol (PEG)-Dextran (DEX) Aqueous Two-Phase System (ATPS). Coatings, 12(3), 415. https://doi.org/10.3390/coatings12030415