Impact Abrasive Wear Resistance of CrN and CrAlN Coatings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coating Preparation
2.2. Characterization of Coating
2.3. Impact Abrasive Wear Test
3. Results and Discussion
3.1. Microstructure and Mechanical Properties of Coatings
3.2. Impact Dynamic Response of Coatings
3.3. Impact Wear Morphological Analysis
3.4. Impact Mechanism Analysis
4. Conclusions
- 1.
- The kinetic energy absorbed during the impact test is mainly used for plastic deformation and material removal.
- 2.
- The CrN and CrAlN coatings underwent plastic deformation in the no-sand condition. Both coatings can protect the substrate from oxidation at 500 °C. Additionally, the CrAlN and CrN coatings are preserved intact. The high harness and H3/E2 of the CrAlN coating minimized plastic deformation and increased resistance to crack initiation and propagation.
- 3.
- The wear area and depth significantly increased when the sand particles participated in the impact test due to the cutting and squeezing effects. The wear scar can be divided into two areas: (i) mixed impact zone and (ii) sand impact zone. Wear was most severe in the mixed impact zone because the sand was chipped, squeezed, and continuously embedded in the matrix under the continuous impact of the pellets.
- 4.
- The CrAlN coating had a shallow wear scar and exhibited stronger impact wear resistance than the CrN coating.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kopeć, M.; Malá, M.; Cvrček, L.; Krejčí, J. Debris-Fretting Test of Coated and Uncoated Zr-1%Nb Cladding. Acta Polytech. CTU Proc. 2019, 24, 15–20. [Google Scholar] [CrossRef]
- Kopeć, M.; Pašta, O.; Malá, M.; Halodová, P.; Cvrček, L.; Krejčí, J. On Debris-Fretting Impact—The Study of Oxide and Chromium Layer Application. J. Nucl. Eng. Radiat. Sci. 2021, 7, 021802. [Google Scholar] [CrossRef]
- Cai, Z.-B.; Li, Z.-Y.; Yin, M.-G.; Zhu, M.-H.; Zhou, Z.-R. A review of fretting study on nuclear power equipment. Tribol. Int. 2020, 144, 106095. [Google Scholar] [CrossRef]
- Yin, M.-G.; Cai, Z.-B.; Zhang, Z.-X.; Yue, W. Effect of ultrasonic surface rolling process on impact-sliding wear behavior of the 690 alloy. Tribol. Int. 2020, 147, 105600. [Google Scholar] [CrossRef]
- Zimmer, A.; Veys-Renaux, D.; Broch, L.; Stein, N.; Rocca, E. Oxide Growth Mechanism on Mg AZ91 Alloy by Anodizing: Combination of Electrochemical and Ellipsometric In-Situ Measurements. J. Electrochem. Soc. 2017, 164, C1059–C1066. [Google Scholar] [CrossRef]
- Darband, G.B.; Aliofkhazraei, M.; Hamghalam, P.; Valizade, N. Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications. J. Magnes. Alloy. 2017, 5, 74–132. [Google Scholar] [CrossRef]
- Li, Z.-Y.; Cai, Z.-B.; Cui, Y.; Liu, J.-H.; Zhu, M.-H. Effect of oxidation time on the impact wear of micro-arc oxidation coating on aluminum alloy. Wear 2019, 426–427, 285–295. [Google Scholar] [CrossRef]
- Zheng, T.; Hu, Y.; Pan, F.; Zhang, Y.; Tang, A. Fabrication of corrosion-resistant superhydrophobic coating on magnesium alloy by one-step electrodeposition method. J. Magnes. Alloy. 2019, 7, 193–202. [Google Scholar] [CrossRef]
- Cui, X.-J.; Liu, C.-H.; Yang, R.-S.; Fu, Q.-S.; Lin, X.-Z.; Gong, M. Duplex-layered manganese phosphate conversion coating on AZ31 Mg alloy and its initial formation mechanism. Corros. Sci. 2013, 76, 474–485. [Google Scholar] [CrossRef]
- Suo, X.; Guo, X.; Li, W.; Planche, M.-P.; Bolot, R.; Liao, H.; Coddet, C. Preparation and characterization of magnesium coating deposited by cold spraying. J. Mater. Process. Technol. 2012, 212, 100–105. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Shi, S.; Ning, C.; Lu, Z.; Zhang, G. Si-DLC films deposited by a novel method equipped with a co-potential auxiliary cathode for anti-corrosion and anti-wear application. J. Mater. Sci. Technol. 2022, 109, 114–128. [Google Scholar] [CrossRef]
- Wan, Z.; Zhang, T.F.; Lee, H.B.; Yang, J.H.; Choi, W.C.; Han, B.; Kim, K.H.; Kwon, S.H. Improved Corrosion Resistance and Mechanical Properties of CrN Hard Coatings with an Atomic Layer Deposited Al2O3 Interlayer. ACS Appl. Mater. Interfaces 2015, 7, 26716–26725. [Google Scholar] [CrossRef]
- Chen, Q.; Wu, G.; Li, D.; Li, A.; Shang, L.; Lu, Z.; Zhang, G.; Wu, Z.; Tian, G. Understanding the unusual friction behavior of TiN films in vacuum. Tribol. Int. 2019, 137, 379–386. [Google Scholar] [CrossRef]
- Meng, C.; Yang, L.; Wu, Y.; Tan, J.; Dang, W.; He, X.; Ma, X. Study of the oxidation behavior of CrN coating on Zr alloy in air. J. Nucl. Mater. 2019, 515, 354–369. [Google Scholar] [CrossRef]
- Liu, J.; Cui, Z.; Ma, D.; Lu, J.; Cui, Y.; Li, C.; Liu, W.; Hao, Z.; Hu, P.; Yao, M.; et al. Investigation of oxidation behaviors of coated Zircaloy as accident-tolerant fuel with CrAlN and CrAlSiN coatings in high-temperature steam. Corros. Sci. 2020, 175, 108896. [Google Scholar] [CrossRef]
- Li, Z.; Liu, C.; Chen, Q.; Yang, J.; Liu, J.; Yang, H.; Zhang, W.; Zhang, R.; He, L.; Long, J.; et al. Microstructure, high-temperature corrosion and steam oxidation properties of Cr/CrN multilayer coatings prepared by magnetron sputtering. Corros. Sci. 2021, 191, 109755. [Google Scholar] [CrossRef]
- Zhang, X.; Tian, X.-B.; Zhao, Z.-W.; Gao, J.-B.; Zhou, Y.-W.; Gao, P.; Guo, Y.-Y.; Lv, Z. Evaluation of the adhesion and failure mechanism of the hard CrN coatings on different substrates. Surf. Coat. Technol. 2019, 364, 135–143. [Google Scholar] [CrossRef]
- Barshilia, H.C.; Selvakumar, N.; Deepthi, B.; Rajam, K.S. A comparative study of reactive direct current magnetron sputtered CrAlN and CrN coatings. Surf. Coat. Technol. 2006, 201, 2193–2201. [Google Scholar] [CrossRef]
- Chang, Y.-Y.; Yang, Y.-J.; Weng, S.-Y. Effect of interlayer design on the mechanical properties of AlTiCrN and multilayered AlTiCrN/TiSiN hard coatings. Surf. Coat. Technol. 2020, 389, 125637. [Google Scholar] [CrossRef]
- Drnovšek, A.; de Figueiredo, M.R.; Vo, H.; Xia, A.; Vachhani, S.J.; Kolozsvári, S.; Hosemann, P.; Franz, R. Correlating high temperature mechanical and tribological properties of CrAlN and CrAlSiN hard coatings. Surf. Coat. Technol. 2019, 372, 361–368. [Google Scholar] [CrossRef]
- Hu, C.; Xu, Y.X.; Chen, L.; Pei, F.; Du, Y. Mechanical properties, thermal stability and oxidation resistance of Ta-doped CrAlN coatings. Surf. Coat. Technol. 2019, 368, 25–32. [Google Scholar] [CrossRef]
- Zhou, S.; Qiu, Z.; Zeng, D. Deformation mechanisms and crack routes of CrAlN coatings. Mater. Charact. 2020, 167, 110491. [Google Scholar] [CrossRef]
- Fan, Q.-X.; Zhang, J.-J.; Wu, Z.-H.; Liu, Y.-M.; Zhang, T.; Yan, B.; Wang, T.-G. Influence of Al Content on the Microstructure and Properties of the CrAlN Coatings Deposited by Arc Ion Plating. Acta Metall. Sin. 2017, 30, 1221–1230. [Google Scholar] [CrossRef]
- Zhu, X.; Dou, H.; Ban, Z.; Liu, Y.; He, J. Repeated impact test for characterization of hard coatings. Surf. Coat. Technol. 2007, 201, 5493–5497. [Google Scholar] [CrossRef]
- Falsafein, M.; Ashrafizadeh, F.; Kheirandish, A. Influence of thickness on adhesion of nanostructured multilayer CrN/CrAlN coatings to stainless steel substrate. Surf. Interfaces 2018, 13, 178–185. [Google Scholar] [CrossRef]
- Jiang, X.; Zhao, D.; Wang, Y.; Duan, W.; Wang, L. Toward hard yet tough VC coating via modulating compressive stress and nanostructure to enhance its protective performance in seawater. Ceram. Int. 2018, 45, 1049–1057. [Google Scholar] [CrossRef]
- Qiu, L.; Du, Y.; Wang, S.; Li, K.; Yin, L.; Wu, L.; Zhong, Z.; Albir, L. Mechanical properties and oxidation resistance of chemically vapor deposited TiSiN nanocomposite coating with thermodynamically designed compositions. Int. J. Refract. Met. Hard Mater. 2019, 80, 30–39. [Google Scholar] [CrossRef]
- Li, W.; Tang, P.; Shang, L.; He, D.; Wang, L.; Zhang, G.; Jin, K. Tribological behaviors of CrN/Cr3C2-NiCr duplex coating at elevated temperatures. Surf. Coat. Technol. 2019, 378, 124926. [Google Scholar] [CrossRef]
- Charitidis, C.; Panayiotatos, Y.; Logothetidis, S. A quantitative study of the nano-scratch behavior of boron and carbon nitride films. Diam. Relat. Mater. 2003, 12, 1088–1092. [Google Scholar] [CrossRef]
- Chen, P.; Xiang, X.; Shao, T.; La, Y.; Li, J. Effect of triangular texture on the tribological performance of die steel with TiN coatings under lubricated sliding condition. Appl. Surf. Sci. 2016, 389, 361–368. [Google Scholar] [CrossRef]
- Leyland, A.; Matthews, A. On the significance of the H/E ratio in wear control a nanocomposite coating approach to optimised tribological behaviour. Wear 2000, 246, 1–11. [Google Scholar] [CrossRef]
- Musil, J. Hard and superhard nanocomposite coatings. Surf. Coat. Technol. 2000, 125, 322–330. [Google Scholar] [CrossRef]
- Wu, S.-B.; Cai, Z.-B.; Lin, Y.; Li, Z.-Y.; Zhu, M.-H. Effect of abrasive particle hardness on interface response and impact wear behavior of TC17 titanium alloy. Mater. Res. Express 2018, 6, 016521. [Google Scholar] [CrossRef]
- Cai, Z.-B.; Li, Z.-Y.; Ding, Y.; Zheng, J.; Liu, J.-H.; Zhou, Z.R. Preparation and impact resistance performance of bionic sandwich structure inspired from beetle forewing. Compos. Part B Eng. 2019, 161, 490–501. [Google Scholar] [CrossRef]
- Yin, M.; Thibaut, C.; Wang, L.; Nélias, D.; Zhu, M.; Cai, Z. Impact-sliding wear response of 2.25Cr1Mo steel tubes: Experimental and semi-analytical method. Friction 2021, 10, 473–490. [Google Scholar] [CrossRef]
- Liu, B.; Li, W.; Lu, X.; Jia, X.; Jin, X. The effect of retained austenite stability on impact-abrasion wear resistance in carbide-free bainitic steels. Wear 2019, 428–429, 127–136. [Google Scholar] [CrossRef]
- Lin, Y.; Cai, Z.-B.; Li, Z.-Y.; Yin, M.-G.; Wang, W.-J.; He, W.-F.; Zhou, Z.-R. Study on the abrasive wear behavior of laser shock peening Ti-6Al-4V titanium alloy under controlled cycling impact. Wear 2019, 426–427, 112–121. [Google Scholar] [CrossRef]
- Lin, Y.; Ding, S.-Y.; Zhou, L.-C.; He, W.-F.; Cai, Z.-B.; Wang, W.-J.; Zhou, Z.-R. Influence of laser shock peening parameters on the abrasive wear behavior of TC4 titanium alloy under controlled cycling impact. Mater. Res. Express 2019, 6, 096546. [Google Scholar] [CrossRef]
- Cui, X.-J.; Ning, C.-M.; Zhang, G.-A.; Shang, L.-L.; Zhong, L.-P.; Zhang, Y.-J. Properties of polydimethylsiloxane hydrophobic modified duplex microarc oxidation/diamond-like carbon coatings on AZ31B Mg alloy. J. Magnes. Alloy. 2021, 9, 1285–1296. [Google Scholar] [CrossRef]
Point | Cr | N | Al | O | Fe | Mn | Si |
---|---|---|---|---|---|---|---|
1 | 93.68 | 5.58 | 0 | 0.74 | 0 | 0 | 0 |
2 | 92.93 | 5.83 | 0 | 1.24 | 0 | 0 | 0 |
3 | 67.50 | 10.80 | 19.85 | 0 | 0.87 | 0.83 | 0.15 |
4 | 66.45 | 20.27 | 19.51 | 2.22 | 0.95 | 0 | 0.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Ning, C.; Dong, Y.; Xiao, C.; Wang, X.; Peng, H.; Cai, Z. Impact Abrasive Wear Resistance of CrN and CrAlN Coatings. Coatings 2022, 12, 427. https://doi.org/10.3390/coatings12040427
Luo Y, Ning C, Dong Y, Xiao C, Wang X, Peng H, Cai Z. Impact Abrasive Wear Resistance of CrN and CrAlN Coatings. Coatings. 2022; 12(4):427. https://doi.org/10.3390/coatings12040427
Chicago/Turabian StyleLuo, Ying, Chuangming Ning, Yuanyuan Dong, Cong Xiao, Xiaotong Wang, Hang Peng, and Zhenbing Cai. 2022. "Impact Abrasive Wear Resistance of CrN and CrAlN Coatings" Coatings 12, no. 4: 427. https://doi.org/10.3390/coatings12040427
APA StyleLuo, Y., Ning, C., Dong, Y., Xiao, C., Wang, X., Peng, H., & Cai, Z. (2022). Impact Abrasive Wear Resistance of CrN and CrAlN Coatings. Coatings, 12(4), 427. https://doi.org/10.3390/coatings12040427