Application of Chitosan-Lignosulfonate Composite Coating Film in Grape Preservation and Study on the Difference in Metabolites in Fruit Wine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Equipment
2.2. Methods
2.2.1. Preparation Method CH/LS Bio-Composite Film
2.2.2. Determination Method of CH/LS Film on the Preservation Effect of Grape Berry
2.2.3. Determination of Decay Rates
2.2.4. Hardness
2.2.5. Weight Loss Rate
2.2.6. Soluble Solids
2.2.7. Titratable Acid Content
- V: The total volume of sample dilution (mL); V1: the volume of the sampling solution during titration (mL);
- C: The number of milliliters of sodium hydroxide standard solution consumed;
- N: The molar concentration of sodium hydroxide standard solution;
- W: Sample weight (g);
- Conversion factor: Tartaric acid—0.075.
2.3. Determination of Metabolites in Wine
The Wine Sample
2.4. NMR Spectroscopic Analysis
2.4.1. Pre-Treatment of Wine Samples
2.4.2. NMR Experimental Data Collection
2.5. Statistical Analysis
NMR Spectral Data Processing
3. Results and Discussion
3.1. The Effect of CH/LS Film on the Preservation of Grapes
3.1.1. Determination of Decay Rates
3.1.2. Hardness
3.1.3. Weight Loss Rate
3.1.4. Soluble Solids
3.1.5. Titratable Acid Content
3.2. Identification of Wine Metabolites from Helan Mountain in Ningxia
3.3. Differences of Metabolites in Different Wine Varieties from Helan Mountain
3.3.1. Analysis of Metabolites of Chardonnay and Italian Riesling Dry White
3.3.2. Analysis of Differences of Metabolites between Cabernet Sauvignon Dry Red Wine and Italian Riesling, Chardonnay Dry White Wine
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Porat, R.; Lichter, A.; Terry, L.A.; Harker, R.; Buzby, J. Postharvest losses of fruit and vegetables during retail and in consumers’ homes: Quantifications, causes, and means of prevention. Postharvest Biol. Technol. 2018, 139, 135–149. [Google Scholar] [CrossRef] [Green Version]
- Del Nobile, M.A.; Sinigaglia, M.; Conte, A.; Speranza, B.; Scrocco, C.; Brescia, I.; Bevilacqua, A.; Laverse, J.; La Notte, E.; Antonacci, D. Influence of postharvest treatments and film permeability on quality decay kinetics of minimally processed grapes. Postharvest Biol. Technol. 2008, 47, 389–396. [Google Scholar] [CrossRef]
- Fang, Y.; Wakisaka, M. A Review on the Modified Atmosphere Preservation of Fruits and Vegetables with Cutting-Edge Technologies. Agriculture 2021, 11, 992. [Google Scholar] [CrossRef]
- Morata, A.; Loira, I.; Vejarano, R.; González, C.; Callejo, M.J.; Suárez-Lepe, J.A. Emerging preservation technologies in grapes for winemaking. Trends Food Sci. Technol. 2017, 67, 36–43. [Google Scholar] [CrossRef]
- Auras, R.; Singh, S.P.; Singh, J. Performance evaluation of PLA against existing PET and PS containers. J. Test. Eval. 2006, 34, 530–536. [Google Scholar] [CrossRef]
- Masmoudi, F.; Alix, S.; Buet, S.; Mehri, A.; Bessadok, A.; Jaziri, M.; Ammar, E. Design and Characterization of a New Food Packaging Material by Recycling Blends Virgin and Recovered polyethylene terephthalate. Polym. Eng. Sci. 2020, 60, 250–256. [Google Scholar] [CrossRef]
- Aquino, A.D.; Blank, A.F.; Cristina, L.D.A.S.L. Impact of edible chitosan-cassava starch coatings enriched with Lippia gracilis Schauer genotype mixtures on the shelf life of guavas (Psidium guajava L.) during storage at room temperature. Food Chem. 2015, 171, 108–116. [Google Scholar] [CrossRef]
- Baris Karsli, Emre Caglak, Witoon Prinyawiwatkul, Effect of high molecular weight chitosan coating on quality and shelf life of refrigerated channel catfish fillets. LWT 2021, 142, 111034. [CrossRef]
- Călinoiu, L.-F.; Ştefănescu, B.E.; Pop, I.D.; Muntean, L.; Vodnar, D.C. Chitosan Coating Applications in Probiotic Microencapsulation. Coatings 2019, 9, 194. [Google Scholar] [CrossRef] [Green Version]
- Youwei, Y.; Yinzhe, R. Grape Preservation Using Chitosan Combined with β-Cyclodextrin. Int. J. Agron. 2013, 2013, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Bilbao-Sainz, C.; Chiou, B.S.; Williams, T.; Wood, D.; Du, W.X.; Sedej, I.; Ban, Z.; Rodov, V.; Poverenov, E.; Vinokur, Y.; et al. Vitamin D-fortified chitosan films from mushroom waste. Carbohydr. Polym. 2017, 167, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Yousuf, B.; Qadri, O.S.; Srivastava, A.K. Recent developments in shelflife extension of fresh-cut fruits and vegetables by application of different edible coatings: A review. LWT-Food Sci. Technol. 2018, 89, 198–209. [Google Scholar] [CrossRef]
- Sameni, J.; Krigstin, S.; Sain, M. Solubility of Lignin and Acetylated Lignin in Organic Solvents. BioResources 2017, 12, 1548–1565. [Google Scholar] [CrossRef]
- Atmajayanti, A.T.; Hung, C.C.; Yuen, T.Y.P.; Shih, R.C. Influences of Sodium Lignosulfonate and High-Volume Fly Ash on Setting Time and Hardened State Properties of Engineered Cementitious Composites. Materials 2021, 14, 4779. [Google Scholar] [CrossRef]
- OIV. International Code of Oenological Practices; MAPA: Paris, France, 2006. [Google Scholar]
- Mudnic, I.; Modun, D.; Rastija, V.; Vukovic, J.; Brizic, I.; Katalinic, V.; Kozina, B.; Medic-Saric, M.; Boban, M. Antioxidative and vasodilatory effects of phenolic acids in wine. Food Chem. 2009, 119, 1205–1210. [Google Scholar] [CrossRef]
- Hubner, A.; Sobreira, F.; Vetore Neto, A.; Pinto, C.A.; Dario, M.F.; Díaz, I.E.; Lourenço, F.R.; Rosado, C.; Baby, A.R.; Bacchi, E.M. The Synergistic Behavior of Antioxidant Phenolic Compounds Obtained from Winemaking Waste’s Valorization, Increased the Efficacy of a Sunscreen System. Antioxidants 2019, 8, 530. [Google Scholar] [CrossRef] [Green Version]
- Puškaš, V.; Jović, S.; Antov, M.; Tumbas, V. Antioxidative activity of red wine with the in-creased share of phenolic compounds from solid parts of grape. Chem. Ind. Chem. Eng. Q. 2010, 16, 65–71. [Google Scholar] [CrossRef]
- Jin, L.; Huang, Z.; Li, Y.; Sun, Z.; Li, H.; Zhang, J. On Modified Multi-Output Chebyshev-Polynomial Feed-Forward Neural Network for Pattern Classification of Wine Regions. IEEE Access. 2018, 7, 1973–1980. [Google Scholar] [CrossRef]
- Williamson, P.O.; Robichaud, J.; Francis, I.L. Comparison of Chinese and Australian consumers’ liking responses for red wines. Aust. J. Grape Wine Res. 2012, 18, 256–267. [Google Scholar] [CrossRef]
- Ricardo-Rodrigues, S.; Laranjo, M.; Coelho, R.; Martins, P.; Rato, A.E.; Vaz, M.; Valverde, P.; Shahidian, S.; Véstia, J.; Agulheiro-Santos, A.C. Terroir Influence on Quality of ‘Crimson’ Table Grapes. Sci. Hortic. 2019, 245, 244–249. [Google Scholar] [CrossRef] [Green Version]
- Hu, B.; Gao, J.; Xu, S.; Zhu, J.; Fan, X.; Zhou, X. Quality Evaluation of Different Varieties of Dry Red Wine Based on Nuclear Magnetic Resonance Metabolomics. Appl. Biol. Chem. 2020, 64, 24. [Google Scholar] [CrossRef]
- Shimizu, H.; Akamatsu, F.; Kamada, A.; Koyama, K.; Okuda, M.; Fukuda, H.; Iwashita, K.; Goto-Yamamoto, N. Discrimination of wine from grape cultivated in Japan, imported wine, and others by multi-elemental analysis. J. Biosci. Bioeng. 2018, 125, 413–418. [Google Scholar] [CrossRef] [PubMed]
- da Costa, G.; Gougeon, L.; Guyon, F.; Richard, T. 1H NMR metabolomics applied to Bordeaux red wines. Food Chem. 2019, 301, 125257. [Google Scholar]
- Trygg, J.; Holmes, E.; Lundstedt, T. Chemometrics in metabonomics. J. Proteome Res. 2007, 6, 469–479. [Google Scholar] [CrossRef]
- Godelmann, R.; Fang, F.; Humpfer, E.; Schutz, B.; Bansbach, M.; Schafer, H.; Spraul, M. Targeted and Nontargeted Wine Analysis by 1H NMR Spectroscopy Combined with Multivariate Statistical Analysis. Differentiation of Important Parameters: Grape Variety, Geographical Origin, Year of Vintage. J. Agric. Food Chem. 2013, 61, 5610–5619. [Google Scholar] [CrossRef]
- Tan, Y.M.; Lim, S.H.; Tay, B.Y.; Lee, M.W.; Thian, E.S. Functional chitosan-based grapefruit seed extract composite films for applications in food packaging technology. Mater. Res. Bull. 2015, 69, 142–146. [Google Scholar] [CrossRef]
- Yao, X.; Liu, J.; Hu, H.; Yun, D.; Liu, J. Development and comparison of different polysaccharide/PVA-based active/intelligent packaging films containing red pitaya betacyanins. Food Hydrocoll. 2022, 124, 107305. [Google Scholar] [CrossRef]
- Li, C.; Tao, J.; Zhang, H. Peach Gum Polysaccharides-Based Edible Coatings Extend Shelf Life of Cherry Tomatoes. Biotech 2017, 7, 168. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, Q.; Zhou, X.; Wei, B.; Ji, S. The Effect of Ethylene Absorbent Treatment on the Softening of Blueberry Fruit. Food Chem. 2018, 246, 286–294. [Google Scholar] [CrossRef]
- Shariatinia, Z.; Fazli, M. Mechanical properties and antibacterial activities of novel nanobiocomposite films of chitosan and starch. Food Hydrocoll. 2015, 46, 112–124. [Google Scholar] [CrossRef]
- Zhang, J.; Li, D.; Xu, W.; Fu, Y. Preservation of Kyoho grapes stored in active, slow-releasing pasteurizing packaging at room temperature. LWT-Food Sci. Technol. 2014, 56, 440–444. [Google Scholar] [CrossRef]
- Yu, Y.M. The Starch and Chitosan Film Containing Antibacterial Agent Natamycins Giant Peak Grape Preservation Effect Evaluation; Heilongjiang University: Harbin, China, 2013. [Google Scholar]
- Francisco, C.B.; Pellá, M.G.; Silva, O.A.; Raimundo, K.F.; Caetano, J.; Linde, G.A.; Colauto, N.B.; Dragunski, D.C. Shelf-life of guavas coated with biodegradable starch and cellulose-based films. Int. J. Biol. Macromol. 2020, 152, 272–279. [Google Scholar] [CrossRef] [PubMed]
- China National Standardization Administration Committee. GB15037-2006; National Wine Standard. China Standards Press: Beijing, China, 2006.
- Zhang, M.; Huan, Y.; Tao, Q.; Wang, H.; Li, C.L. Studies on Preservation of Two Cultivars of Grapes at Controlled Temperature. LWT-Food Sci. Technol. 2001, 34, 502–506. [Google Scholar] [CrossRef]
- García, M.A.; Pinotti, A.; Martino, M.N.; Zaritzky, N.E. Characterization of starch and composite edible films and coatings. In Edible Films and Coatings for Food Applications; Springer: New York, NY, USA, 2009; pp. 169–209. [Google Scholar]
- Zhou, X.; Liu, L.; Li, J.; Wang, L.; Song, X. Extraction and Characterization of Pectin from Jerusalem ArtiChoke Residue and Its Application in Blueberry Preservation. Coatings 2022, 12, 385. [Google Scholar] [CrossRef]
- Han, C.; Zhao, Y.; Leonard, S.W.; Traber, M.G. Edible coatings to improve storability and enhance nutritional value of fresh and frozen strawberries (Fragaria × ananassa) and raspberries (Rubus idaeus). Postharvest Biol. Technol. 2004, 33, 67–78. [Google Scholar] [CrossRef]
- Youssef, K.; Roberto, S.R. Chitosan/silica nanocomposite-based formulation alleviated gray mold through stimulation of the antioxidant system in table grapes. Int. J. Biol. Macromol. 2021, 168, 242–250. [Google Scholar] [CrossRef]
- Wu, Z.; Zhou, W.; Pang, C.; Deng, W.; Xu, C.; Wang, X. Multifunctional chitosan-based coating with liposomes containing laurel essential oils and nanosilver for pork preservation. Food Chem. 2019, 295, 16–25. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, H.; Zhang, L.A.; Sun, Q.J. Horseradish peroxidase-mediated synthesis of an antioxidant gallic acid-g-chitosan deriva tive and its preservation application in cherry tomatoes. RSC Adv. 2018, 8, 20363–20371. [Google Scholar] [CrossRef] [Green Version]
- Kan, J.; Liu, J.; Yong, H.; Liu, Y.; Qin, Y.; Liu, J. Development of active packaging based on chitosan-gelatin blend films functional ized with Chinese hawthorn (Crataegus pinnatifida) fruit extract. Int. J. Biol. Macromol. 2019, 140, 384–392. [Google Scholar] [CrossRef]
- Opara, U.L.; Al-Ani, M.R.; Al-Rahbi, N.M. Effect of Fruit Ripening Stage on Physico-Chemical Properties, Nutritional Com position and Antioxidant Components of Tomato (Lycopersicum esculentum) Cultivars. Food Bioprocess Technol. 2012, 5, 3236–3243. [Google Scholar] [CrossRef]
- Jiang, Y.R.; Fu, Y.B.; Li, D.L.; Xu, W.C. Effects of 1-MCP and Controllable-Release SO2 Packaging on Cold Preserva tion of Grapes (C.V. Muscat Hamburg). Adv. Mater. Res. 2013, 750–752, 2335–2339. [Google Scholar] [CrossRef]
- Verheul, M.J.; Slimestad, R.; Tjøstheim, I.H. From Producer to Consumer: Greenhouse Tomato Quality As Affected by Variety, Maturity Stage at Harvest, Transport Conditions, and Supermarket Storage. J. Agric. Food Chem. 2015, 63, 5026. [Google Scholar] [CrossRef] [PubMed]
- Son, H.S.; Kim, K.M.; Van Den Berg, F.; Hwang, G.S.; Park, W.M.; Lee, C.H.; Hong, Y.S. 1H Nuclear Magnetic Resonance-Based Metabolomic Characterization of Wines by Grape Varieties and Production Areas. J. Agric. Food Chem. 2008, 56, 8007–8016. [Google Scholar] [CrossRef]
- Gougeon, L.; Da Costa, G.; Le Mao, I.; Ma, W.; Teissedre, P.L.; Guyon, F.; Richard, T. Wine Analysis and Authenticity Using H-1-NMR Metabolomics Data: Application to Chinese Wines. Food Anal. Methods 2018, 11, 3425–3434. [Google Scholar] [CrossRef]
- Goodacre, R.; Broadhurst, D.; Smilde, A.K.; Kristal, B.S.; Baker, J.D.; Beger, R.; Bessant, C.; Connor, S.; Capuani, G.; Craig, A.; et al. Proposed minimum reporting standards for data analysis in metabolomics. Metabolomics 2007, 3, 231–241. [Google Scholar] [CrossRef]
- Cassino, C.; Tsolakis, C.; Bonello, F.; Gianotti, V.; Osella, D. Effects of area, year and climatic factors on Barbera wine characteristics studied by the combination of 1H-NMR metabolomics and chemometrics. J. Wine Res. 2017, 28, 259–277. [Google Scholar] [CrossRef]
- Nho-Eul, S.; Chan-Mi, L.; Sang-Ho, B. Isolation and molecular identification for autochthonous starter Saccharomyces cerevisiae with low biogenic amine synthesis for black raspberry (Rubus coreanus Miquel) wine fermentation. J. Gen. Appl. Microbiol. 2019, 65, 188–196. [Google Scholar]
- Wojdyo, A.; Samoticha, J.; Chmielewska, J. The influence of different strains of Oenococcus oeni malolactic bacteria on profile of organic acids and phenolic compounds of red wine cultivars Rondo and Regent growing in a cold region. J. Food Sci. 2020, 85, 1070–1081. [Google Scholar] [CrossRef]
- Ferreira, A.M.; Mendes-Faia, A. The Role of Yeasts and Lactic Acid Bacteria on the Metabolism of Organic Acids during Winemaking. Foods 2020, 9, 1231. [Google Scholar] [CrossRef]
- Zheng, Y.J.; Duan, Y.T.; Zhang, Y.F.; Pan, Q.H.; Li, J.M.; Huang, W.D. Determination of Organic Acids in Red Wine and Must on Only One RP-LC-Column Directly After Sample Dilution and Filtration. Chromatographia 2009, 69, 1391–1395. [Google Scholar] [CrossRef]
- Lasik, M. Influence of malolactic bacteria inoculation scenarios on the efficiency of the vinification process and the quality of grape wine from the Central European region. Eur. Food Res. Technol. 2017, 243, 2163–2173. [Google Scholar] [CrossRef] [Green Version]
Keys | Metabolites | 1H-NMR Chemical Shift |
---|---|---|
1 | Valine | 0.87 (d, C4H3), 1.03 (d, C5H3) |
2 | Ethanol | 1.18 (t, C2H3), 3.64 (q, C1H2) |
3 | 2,3-Butanediol | 1.16 (d, C1H3 + C4H3) |
4 | Succinic acid | 2.64 (s, C2H2 + C3H2) |
5 | Proline | 2.00 (m, u, γ-CH2), 2.07 (m, u, β-CH), 2.35 (m, u, β’-CH), 3.35 (m, u, δ-CH), 3.42 (m, u, δ-CH), 4.16 (m, u, α-CH) |
6 | Ethyl acetate | 1.26 (t, C4H3), 4.16 (q, C3H2) |
7 | Tartaric acid | 4.53 (s, C2H + C3H) |
8 | α-Glucose | 5.23 (d, αC1H) |
9 | β-Glucose | 4.61 (d, βC1H) |
10 | Lactic acid | 1.36 (d, C3H3), 4.28 (m, C2H) |
11 | Gallic acid | 7.14 (s, C2H + C6H) |
12 | Glycerol | 3.56 (q, C2H2), 3.65 (q, C3H2), 3.81 (m, C1H) |
13 | α-D-Glucuronic acid | 5.34 (d, C1H) |
14 | γ-Aminobutyric acid | 2.50 (t, α-CH2), 1.96 (m, β-CH2), 3.05 (t, γ-CH2) |
15 | Malic acid | 2.73 (dd, βCH2), 2.86 (dd, β’CH2), 4.46 (q, CH) |
16 | Alanine | 1.51 (d, βCH3) |
17 | D-Sucrose | 5.43 (d, C1H), 3.55 (dd, C2H), 3.72 (dd, C3H), 3.90 (dd, C4H), 4.215 (d, C1′H), 4.05 (dd, C2′H), 3.88 (dd, C3′H) |
Metabolites | Cabernet Sauvignon | Chardonnay | Italian Riesling |
---|---|---|---|
Ethyl acetate | 1.52 ± 0.03 b | 0.92 ± 0.01 c | 0.32 ± 0.01 d |
Lactic acid | 0.51 ± 0.03 b | 0.22 ± 0.02 e | 0.32 ± 0.02 d |
Alanine | 0.04 ± 0.01 d | 0.25 ± 0.02 a | 0.14 ± 0.01 b |
Succinic acid | 1.31 ± 0.02 b | 0.46 ± 0.02 d | 0.47 ± 0.01 d |
Proline | 3.23 ± 0.05 c | 1.50 ± 0.08 d | 0.49 ± 0.02 e |
Malic acid | 4.95 ± 0.17 c | 6.08 ± 0.28 a | 5.37 ± 0.02 b |
Choline | 0.06 ± 0.01 a | 0.04 ± 0.01 b | 0.05 ± 0.01 b |
Glycerol | 13.99 ± 0.09 b | 8.92 ± 0.16 e | 9.89 ± 0.19 d |
Gallic acid | 0.14 ± 0.01 a | 0.03 ± 0.00 c | 0.01 ± 0.00 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, B.; Lin, L.; Fang, Y.; Zhou, M.; Zhou, X. Application of Chitosan-Lignosulfonate Composite Coating Film in Grape Preservation and Study on the Difference in Metabolites in Fruit Wine. Coatings 2022, 12, 494. https://doi.org/10.3390/coatings12040494
Hu B, Lin L, Fang Y, Zhou M, Zhou X. Application of Chitosan-Lignosulfonate Composite Coating Film in Grape Preservation and Study on the Difference in Metabolites in Fruit Wine. Coatings. 2022; 12(4):494. https://doi.org/10.3390/coatings12040494
Chicago/Turabian StyleHu, Boran, Lan Lin, Yujie Fang, Min Zhou, and Xiaoyan Zhou. 2022. "Application of Chitosan-Lignosulfonate Composite Coating Film in Grape Preservation and Study on the Difference in Metabolites in Fruit Wine" Coatings 12, no. 4: 494. https://doi.org/10.3390/coatings12040494
APA StyleHu, B., Lin, L., Fang, Y., Zhou, M., & Zhou, X. (2022). Application of Chitosan-Lignosulfonate Composite Coating Film in Grape Preservation and Study on the Difference in Metabolites in Fruit Wine. Coatings, 12(4), 494. https://doi.org/10.3390/coatings12040494