Effect of Annealing and Oxidation on the Microstructure Evolution of Hot-Dipped Aluminide Q345 Steel with Silicon Addition
Abstract
:1. Introduction
2. Experimental Materials and Methods
2.1. Experimental Materials
2.2. Hot-Dipping Aluminizing
2.3. Hot-Dipping Al-Si
2.4. Annealing and Oxidation
2.5. Characterization
3. Results and Discussion
3.1. Cross-Sectional Microstructure Analysis of Hot-Dipping Pure Aluminum
3.2. Effect of Si Addition in Molten Bath on Microstructure of Coating
3.3. Effect of Annealing Temperature and Time on the Phase Evolution of the Coating
3.4. Effect of Oxidation Process on the Formation of Al2O3 Film
3.5. High-Temperature Oxidation Resistance of Al2O3 Film
4. Conclusions
- (1)
- When Q345 steel was hot-dipped in pure aluminum, the intermediate phase layer was mainly composed of the Fe2Al5 phase. When the hot-dipping temperature was 750 °C and hot-dipping time was 30 s, the interface between the intermetallic phase layer and the substrate was relatively flat.
- (2)
- As the silicon content in the aluminum bath increased, the thickness of the intermetallic layer decreased, and the intermetallic layer/steel-substrate interface transformed from an irregular morphology into a flat morphology.
- (3)
- The annealing time affected the transformation of the intermediate phase in the coating. In addition, the longer the time, the more favorable the transformation of the brittle Fe2Al5 phase into the FeAl phase with good toughness. When the aluminized sample was annealed at 900 °C for 3 h, the intermediate phase in the diffusion layer was completely transformed into the FeAl phase.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shafiee, S.; Topal, E. When will fossil fuel reserves be diminished? Energy Policy 2009, 37, 181–189. [Google Scholar] [CrossRef]
- The Council of the European Union. Directive 2003/30/EC of the European Parliament and of the Council of 8 May 2003 on the promotion of the use of biofuels or other renewable fuels for transport. Off. J. Eur. Union 2003, 123, 43–46. [Google Scholar]
- Grzesik, Z.; Smoła, G.; Adamaszek, K.; Jurasz, Z.; Mrowec, S. Thermal shock corrosion of valve steels utilized in automobile industry. Oxid. Met. 2013, 80, 147–159. [Google Scholar] [CrossRef] [Green Version]
- Sazzad, B.S.; Fazal, M.A.; Haseeb, A.; Masjuki, H.H. Retardation of oxidation and material degradation in biodiesel: A review. RSC Adv. 2016, 6, 60244–60263. [Google Scholar] [CrossRef] [Green Version]
- Drożdż, M.; Kyzioł, K.; Grzesik, Z. Chromium-based oxidation-resistant coatings for the protection of engine valves in automotive vehicles. Mater. Tehnol. 2017, 51, 603–607. [Google Scholar] [CrossRef]
- Badaruddin, M.; Kurniawan, R.D.; Pambudi, A. Low cycle fatigue properties of aluminizing coating on cold-drawn AISI 1018 steel. IOP Conf. Ser. Mater. Sci. Eng. 2020, 807, 012019. [Google Scholar] [CrossRef]
- Ryabov, V.R. Aluminizing of Steel (Translated from the Russian Work: Alitirovanie Stali); Amerind Publishing Co. Pvt. Ltd.: New Delhi, India, 1985. [Google Scholar]
- Bahadur, A.; Mohanti, O.N. Structural studies of hot dip aluminized coatings on mild steel. Mater. Trans. JIM 1991, 32, 1053–1061. [Google Scholar] [CrossRef] [Green Version]
- Heumann, T.; Dittrich, N.A. Structure character of the Fe2Al5 intermetallics compound in hot dip aluminizing process. Z Met. 1959, 50, 617–623. [Google Scholar]
- Eggeler, G.; Auer, W.; Kaesche, H. On the influence of silicon on the growth of the alloy layer during hot dip aluminizing. J. Mater. Sci. 1986, 21, 3348–3350. [Google Scholar] [CrossRef]
- Dey, P.P.; Modak, P.; Chakrabarti, D.; Banerjee, P.S.; Ghosh, M. A Study on the phase formation and physical characteristics of hot-dip aluminized coating at 750 °C. Metallogr. Microstruct. Anal. 2021, 10, 823–838. [Google Scholar] [CrossRef]
- Richards, R.W.; Jones, R.D.; Clements, P.D.; Clarke, H. Metallurgy of continuous hot dip aluminizing. Int. Mater. Rev. 1994, 39, 191–212. [Google Scholar] [CrossRef]
- Lainer, D.I.; Kurakin, A.K. Mechanism of the effect of silicon in aluminum on the process of reactive diffusion of iron into aluminum. Fiz. Metal. Metalloved. 1964, 18, 145. [Google Scholar]
- Zarei, F.; Nuranian, H.; Shirvani, K. Effect of Si addition on the microstructure and oxidation behaviour of formed aluminide coating on HH309 steel by cast-aluminizing. Surf. Coat. Technol. 2020, 394, 125901. [Google Scholar] [CrossRef]
- Wang, C.J.; Chen, S.M. The high-temperature oxidation behavior of hot-dipping Al–Si coating on low carbon steel. Surf. Coat. Technol. 2006, 200, 6601–6605. [Google Scholar] [CrossRef]
- Huang, X.; Xiao, K.; Fang, X.; Xiong, Z.; Wei, L.; Zhu, P.; Li, X. Oxidation behavior of 316L austenitic stainless steel in high temperature air with long-term exposure. Mater. Res. Express 2020, 7, 066517. [Google Scholar] [CrossRef]
- Abro, M.A.; Hahn, J.; Lee, D.B. High temperature oxidation of hot-dip aluminized T92 steels. Met. Mater. Int. 2018, 24, 507–515. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, F.; Lu, G.; Xiang, X.; Tang, T.; Wang, X. Fabrication of Al 2 O 3/FeAl coating as tritium permeation barrier on tritium operating component on quasi-CFETR scale. J. Fusion Energy 2018, 37, 317–324. [Google Scholar] [CrossRef]
- Chen, J.; Li, X.; Hua, P.; Wang, C.; Chen, K.; Wu, Y.; Zhou, W. Growth of inter-metallic compound layers on CLAM steel by HDA and preparation of permeation barrier by oxidation. Fusion Eng. Des. 2017, 125, 57–63. [Google Scholar] [CrossRef]
- Cheng, W.J.; Wang, C.J. Study of microstructure and phase evolution of hot-dipped aluminide mild steel during high-temperature diffusion using electron backscatter diffraction. Appl. Surf. Sci. 2011, 257, 4663–4668. [Google Scholar] [CrossRef]
- Badaruddin, M. Improvement of high temperature oxidation of low carbon steel exposed to ethanol combustion product at 700 C by hot-dip aluminizing coating. Makara J. Technol. 2012, 15, 137–141. [Google Scholar] [CrossRef]
- Badaruddin, M.; Suharno, S.; Wijaya, H.A. Isothermal oxidation behavior of aluminized AISI 1020 steel at the temperature of 700 °C. J. Tek. Mesin 2014, 15, 15–19. [Google Scholar]
- Hakam, M.; Wang, C.J.; Wardono, H.; Asmi, D. High temperature oxidation of low carbon steel with and without an Al coating in an atmosphere containing burning ethanol. AIP Conf. Proc. 2018, 1983, 050002. [Google Scholar]
- Xue, Z.; Hao, X.; Huang, Y.; Gu, L.; Ren, Y.; Zheng, R. Wear resistance and wear mechanism of a hot dip aluminized steel in sliding wear test. Surf. Rev. Lett. 2016, 23, 1550098. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Yang, J. First principle calculations and mechanical properties of the intermetallic compounds in a laser welded steel/aluminum joint. Opt. Laser Technol. 2020, 122, 105875. [Google Scholar] [CrossRef]
- Xu, G.; Wang, K.; Dong, X.; Yang, L.; Ebrahimi, M.; Jiang, H.; Wang, Q.; Ding, W. Review on corrosion resistance of mild steels in liquid aluminum. J. Mater. Sci. Technol. 2021, 71, 12–22. [Google Scholar] [CrossRef]
- Chen, S.; Yang, D.; Zhang, M.; Huang, J.H.; Zhao, X.K. Interaction between the growth and dissolution of intermetallic compounds in the interfacial reaction between solid iron and liquid aluminum. Metall. Mater. Trans. A 2016, 47, 5088–5100. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, J.H.; Li, Y.J. Microstructure and oxidationresistance property of aluminizing layer of two kinds of high-chromium steel. Heat Treat. Met. 2000, 10, 7–10. [Google Scholar]
- Yousaf, M.; Iqbal, J.; Ajmal, M. Variables affecting growth and morphology of the intermetallic layer (Fe2Al5). Mater. Charact. 2011, 62, 517–525. [Google Scholar] [CrossRef]
- Lin, W.; Zhang, X.; Zhao, T.K.; Li, H.Y. Continuous cooling transformation curve of under cooling austenite about Q345 steel. Mater. Sci. Technol. 2009, 17, 247–250. [Google Scholar]
- Massalski, T.B. Binary Alloy Phase Diagrams; ASM International: Phoenix, AZ, USA, 1986. [Google Scholar]
- Marker, M.; Skolyszewska-Kühberger, B.; Effenberger, H.S.; Schmetterer, C.; Richter, K.W. Phase equilibria and structural investigations in the system Al–Fe–Si. Intermetallics 2011, 19, 1919–1929. [Google Scholar] [CrossRef]
Sources | Fe | Mn | S | Si | C | P |
---|---|---|---|---|---|---|
This study | Bal. | 1.3 | 0.015 | 0.3 | 0.16 | 0.015 |
Standard | Bal. | ≤1.70 | ≤0.035 | ≤0.50 | ≤0.20 | ≤0.035 |
No. | Typical Positions | Fe | Al | Mn | Phase |
---|---|---|---|---|---|
(a) | a | 28.2 | 71.2 | 0.6 | Fe2Al5 |
b | 24.2 | 75.3 | 0.5 | FeAl3 | |
c | 23.3 | 76.4 | 0.3 | FeAl3 | |
(b) | a | 28.8 | 70.9 | 0.3 | Fe2Al5 |
b | 24.1 | 75.3 | 0.6 | FeAl3 | |
c | 23.4 | 76.1 | 0.5 | FeAl3 | |
(c) | a | 28.5 | 71.4 | 0.1 | Fe2Al5 |
b | 24.3 | 75.3 | 0.4 | FeAl3 | |
c | 23.3 | 76.2 | 0.5 | FeAl3 | |
(d) | a | 28.1 | 71.6 | 0.3 | Fe2Al5 |
b | 24.5 | 75.1 | 0.4 | FeAl3 | |
c | 23.2 | 76.2 | 0.6 | FeAl3 | |
(e) | a | 27.9 | 71.9 | 0.2 | Fe2Al5 |
b | 23.8 | 75.9 | 0.3 | FeAl3 | |
c | 23.1 | 76.3 | 0.6 | FeAl3 | |
(f) | a | 28.1 | 71.5 | 0.4 | Fe2Al5 |
b | 24.1 | 75.6 | 0.3 | FeAl3 | |
c | 23.1 | 76.5 | 0.4 | FeAl3 |
No. | Typical Positions | Fe | Al | Si | Phase |
---|---|---|---|---|---|
(a) | a | 28.1 | 70.5 | 1.4 | Fe2Al5 |
b | 24.5 | 74.3 | 1.2 | FeAl3 | |
c | 23.6 | 74.9 | 1.5 | FeAl3 | |
(b) | a | 27.3 | 70.6 | 2.1 | Fe2Al5 |
b | 23.3 | 74.9 | 1.8 | FeAl3 | |
c | 22.9 | 75.2 | 1.9 | FeAl3 | |
(c) | a | 26.5 | 70.4 | 3.1 | Fe2Al5 |
b | 23.3 | 74.3 | 2.4 | FeAl3 | |
c | 22.3 | 75.2 | 2.5 | FeAl3 | |
(d) | a | 27.7 | 69.1 | 3.2 | Fe2Al5 |
b | 23.4 | 73.5 | 3.1 | FeAl3 | |
c | 23.4 | 74.1 | 3.5 | FeAl3 | |
(e) | a | 27.6 | 68.2 | 4.2 | Fe2Al5 |
b | 24.2 | 69.7 | 6.1 | FeAl3 | |
c | 23.0 | 70.4 | 6.6 | FeAl3 | |
(f) | a | 24.1 | 68.6 | 7.3 | FeAl3 |
No. | Typical Positions | Fe | Al | Si | Phase |
---|---|---|---|---|---|
(a) | a | 74.6 | 22.3 | 3.1 | α-Fe |
b | 45.2 | 41.9 | 12.9 | FeAl | |
c | 52.1 | 36.7 | 11.2 | FeAl | |
d | 31.7 | 67.2 | 1.1 | FeAl2 | |
(b) | a | 78.2 | 19.1 | 2.7 | α-Fe |
b | 46.6 | 45.5 | 7.9 | FeAl | |
c | 46.4 | 47.5 | 6.1 | FeAl | |
d | 30.2 | 67.5 | 2.3 | FeAl2 | |
(c) | a | 75.2 | 22.1 | 2.7 | α-Fe |
b | 48.5 | 44.1 | 7.4 | FeAl | |
c | 44.8 | 7.1 | 48.1 | FeAl | |
d | 31.1 | 67.2 | 1.7 | FeAl2 | |
(d) | a | 78.8 | 18.7 | 2.5 | α-Fe |
b | 56.9 | 40.4 | 2.7 | FeAl | |
c | 62.3 | 35.6 | 2.1 | FeAl | |
d | 33.8 | 65.5 | 0.7 | FeAl2 | |
(e) | a | 78.8 | 18.8 | 2.4 | α-Fe |
b | 50.4 | 46.5 | 3.1 | FeAl | |
c | 49.4 | 44.9 | 5.7 | FeAl | |
d | 34.1 | 64.8 | 1.1 | FeAl2 | |
(f) | a | 78.3 | 21.3 | 0.4 | α-Fe |
b | 52.5 | 46.4 | 1.1 | FeAl |
No. | Typical Positions | Fe | Al | Si | O | Phase |
---|---|---|---|---|---|---|
(b) | a | 76.6 | 22.2 | 1.2 | - | α-Fe |
b | 63.9 | 35.3 | 0.8 | - | FeAl | |
c | 2.9 | 32.7 | 2.6 | 61.8 | Al2O3 | |
(d) | a | 78.2 | 19.1 | 2.7 | - | α-Fe |
b | 2.6 | 29.2 | 2.8 | 65.4 | Al2O3 | |
(f) | a | 72.9 | 24.9 | 2.2 | - | α-Fe |
b | 2.4 | 29.8 | 2.6 | 65.2 | Al2O3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Yuan, B.; Liu, Y.; Wang, J.; Su, X. Effect of Annealing and Oxidation on the Microstructure Evolution of Hot-Dipped Aluminide Q345 Steel with Silicon Addition. Coatings 2022, 12, 503. https://doi.org/10.3390/coatings12040503
Ma Y, Yuan B, Liu Y, Wang J, Su X. Effect of Annealing and Oxidation on the Microstructure Evolution of Hot-Dipped Aluminide Q345 Steel with Silicon Addition. Coatings. 2022; 12(4):503. https://doi.org/10.3390/coatings12040503
Chicago/Turabian StyleMa, Yujian, Binbin Yuan, Ya Liu, Jianhua Wang, and Xuping Su. 2022. "Effect of Annealing and Oxidation on the Microstructure Evolution of Hot-Dipped Aluminide Q345 Steel with Silicon Addition" Coatings 12, no. 4: 503. https://doi.org/10.3390/coatings12040503
APA StyleMa, Y., Yuan, B., Liu, Y., Wang, J., & Su, X. (2022). Effect of Annealing and Oxidation on the Microstructure Evolution of Hot-Dipped Aluminide Q345 Steel with Silicon Addition. Coatings, 12(4), 503. https://doi.org/10.3390/coatings12040503