Design and Synthesis of Multipotent Antioxidants for Functionalization of Iron Oxide Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Computational Studies
2.2. Synthesis of MPAO1 (2-(2-(2-Hydroxyethoxy)ethoxy)ethyl 2-((3,5-Di-tert-butyl-4-hydroxybenzyl)thio)acetate)
2.3. Synthesis of MPAO2 (2-(2-(2-(2-Hydroxyethoxy)ethoxy)ethoxy)ethyl 2-((3,5-Di-tert-butyl-4-hydroxybenzyl)thio)acetate)
2.4. Preparation of Magnetite Nanoparticles (IONP)
2.5. Post-Functionalization
Synthesis of IONP@AOx
2.6. DPPH Assay
2.7. Antimicrobial Activity
2.7.1. Determination of Antibacterial Activity
2.7.2. Determination of Antifungal Activity
- R1 = Colony radius of the pathogens opposed to antagonist agent.
- R2 = Colony radius of the pathogen towards the antagonist agent.
3. Results
3.1. FTIR Analysis
3.2. Raman Analysis
3.3. XRD Analysis
3.4. Magnetic Properties
3.5. Morphology and Structure
3.6. EDX Analysis
3.7. Computational Analysis
3.7.1. ADMET Studies
3.7.2. PASS Analysis
3.8. Antioxidant Activity
3.9. Antibacterial Activity
3.10. Antifungal Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ingold, K.U.; Pratt, D.A. Advances in radical-trapping antioxidant chemistry in the 21st century: A kinetics and mechanisms perspective. Chem. Rev. 2014, 114, 9022–9046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eftekhari, A.; Ahmadian, E.; Panahi-Azar, V.; Hosseini, H.; Tabibiazar, M.; Maleki Dizaj, S. Hepatoprotective and free radical scavenging actions of quercetin nanoparticles on aflatoxin b1-induced liver damage: In vitro/in vivo studies. Artif. Cells Nanomed. Biotechnol. 2018, 46, 411–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasanzadeh, M.; Mokhtari, F.; Shadjou, N.; Eftekhari, A.; Mokhtarzadeh, A.; Jouyban-Gharamaleki, V.; Mahboob, S. Poly arginine-graphene quantum dots as a biocompatible and non-toxic nanocomposite: Layer-by-layer electrochemical preparation, characterization and non-invasive malondialdehyde sensory application in exhaled breath condensate. Mater. Sci. Eng. C 2017, 75, 247–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasanzadeh, M.; Tagi, S.; Solhi, E.; Mokhtarzadeh, A.; Shadjou, N.; Eftekhari, A.; Mahboob, S. An innovative immunosensor for ultrasensitive detection of breast cancer specific carbohydrate (ca 15-3) in unprocessed human plasma and mcf-7 breast cancer cell lysates using gold nanospear electrochemically assembled onto thiolated graphene quantum dots. Int. J. Biol. Macromol. 2018, 114, 1008–1017. [Google Scholar] [CrossRef]
- Cadet, J.; Wagner, J.R. Oxidatively generated base damage to cellular DNA by hydroxyl radical and one-electron oxidants: Similarities and differences. Arch. Biochem. Biophys. 2014, 557, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Forman, H.J. 4-hydroxynonenal-mediated signaling and aging. Free Radic. Biol. Med. 2017, 111, 219–225. [Google Scholar] [CrossRef]
- Morry, J.; Ngamcherdtrakul, W.; Yantasee, W. Oxidative stress in cancer and fibrosis: Opportunity for therapeutic intervention with antioxidant compounds, enzymes, and nanoparticles. Redox Biol. 2017, 11, 240–253. [Google Scholar] [CrossRef]
- Bumbudsanpharoke, N.; Choi, J.; Park, I.; Ko, S. Facile biosynthesis and antioxidant property of nanogold-cellulose fiber composite. J. Nanomater. 2015, 16, 195. [Google Scholar] [CrossRef] [Green Version]
- Du, L.; Suo, S.; Wang, G.; Jia, H.; Liu, K.J.; Zhao, B.; Liu, Y. Mechanism and cellular kinetic studies of the enhancement of antioxidant activity by using surface-functionalized gold nanoparticles. Chem.-A Eur. J. 2013, 19, 1281–1287. [Google Scholar] [CrossRef] [PubMed]
- Nie, Z.; Liu, K.J.; Zhong, C.-J.; Wang, L.-F.; Yang, Y.; Tian, Q.; Liu, Y. Enhanced radical scavenging activity by antioxidant-functionalized gold nanoparticles: A novel inspiration for development of new artificial antioxidants. Free Radic. Biol. Med. 2007, 43, 1243–1254. [Google Scholar] [CrossRef]
- Medhe, S.; Bansal, P.; Srivastava, M.M. Enhanced antioxidant activity of gold nanoparticle embedded 3,6-dihydroxyflavone: A combinational study. Appl. Nanosci. 2014, 4, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Vilas, V.; Philip, D.; Mathew, J. Essential oil mediated synthesis of silver nanocrystals for environmental, anti-microbial and antioxidant applications. Mater. Sci. Eng. C 2016, 61, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Popescu, R.C.; Andronescu, E.; Vasile, B.S. Recent advances in magnetite nanoparticle functionalization for nanomedicine. Nanomaterials 2019, 9, 1791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves, A.d.C.S.; Mainardes, R.M.; Khalil, N.M. Nanoencapsulation of gallic acid and evaluation of its cytotoxicity and antioxidant activity. Mater. Sci. Eng. C 2016, 60, 126–134. [Google Scholar] [CrossRef]
- Salvador, M.; Gutiérrez, G.; Noriega, S.; Moyano, A.; Blanco-López, M.C.; Matos, M. Microemulsion synthesis of superparamagnetic nanoparticles for bioapplications. Int. J. Mol. Sci. 2021, 22, 427. [Google Scholar] [CrossRef]
- Shah, S.T.; A Yehya, W.; Saad, O.; Simarani, K.; Chowdhury, Z.; A Alhadi, A.; Al-Ani, L.A. Surface functionalization of iron oxide nanoparticles with gallic acid as potential antioxidant and antimicrobial agents. Nanomaterials 2017, 7, 306. [Google Scholar] [CrossRef]
- Shah, S.T.; Yehye, W.A.; Chowdhury, Z.Z.; Simarani, K. Magnetically directed antioxidant and antimicrobial agent: Synthesis and surface functionalization of magnetite with quercetin. PeerJ 2019, 7, e7651. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Shah, Z.H.; Riaz, S.; Ahmad, N.; Islam, S.; Raza, M.A.; Naseem, S. Antimicrobial activity of citric acid functionalized iron oxide nanoparticles -superparamagnetic effect. Ceram. Int. 2020, 46, 10942–10951. [Google Scholar] [CrossRef]
- Ariffin, A.; Rahman, N.A.; Yehye, W.A.; Alhadi, A.A.; Kadir, F.A. Pass-assisted design, synthesis and antioxidant evaluation of new butylated hydroxytoluene derivatives. Eur. J. Med. Chem. 2014, 87, 564–577. [Google Scholar] [CrossRef]
- Elmadfa, I.; Meyer, A.L. Body composition, changing physiological functions and nutrient requirements of the elderly. Ann. Nutr. Metab. 2008, 52 (Suppl. S1), 2–5. [Google Scholar] [CrossRef]
- Yehye, W.A.; Abdul Rahman, N.; Alhadi, A.A.; Khaledi, H.; Weng, N.S.; Ariffin, A. Butylated hydroxytoluene analogs: Synthesis and evaluation of their multipotent antioxidant activities. Molecules 2012, 17, 7645–7665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daina, A.; Michielin, O.; Zoete, V. Swissadme: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Lagunin, A.; Stepanchikova, A.; Filimonov, D.; Poroikov, V. Pass: Prediction of activity spectra for biologically active substances. Bioinformatics 2000, 16, 747–748. [Google Scholar] [CrossRef] [PubMed]
- Sotiriou, G.A.; Blattmann, C.O.; Deligiannakis, Y. Nanoantioxidant-driven plasmon enhanced proton-coupled electron transfer. Nanoscale 2016, 8, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Deligiannakis, Y.; Sotiriou, G.A.; Pratsinis, S.E. Antioxidant and antiradical sio2 nanoparticles covalently functionalized with gallic acid. ACS Appl. Mater. Interfaces 2012, 4, 6609–6617. [Google Scholar] [CrossRef]
- Sahu, N.; Soni, D.; Chandrashekhar, B.; Sarangi, B.K.; Satpute, D.; Pandey, R.A. Synthesis and characterization of silver nanoparticles using cynodon dactylon leaves and assessment of their antibacterial activity. Bioprocess Biosyst. Eng. 2013, 36, 999–1004. [Google Scholar] [CrossRef]
- Kumar, S.R.; Priyatharshni, S.; Babu, V.N.; Mangalaraj, D.; Viswanathan, C.; Kannan, S.; Ponpandian, N. Quercetin conjugated superparamagnetic magnetite nanoparticles for in-vitro analysis of breast cancer cell lines for chemotherapy applications. J. Colloid Interface Sci. 2014, 436, 234–242. [Google Scholar] [CrossRef]
- De Faria, D.; Venâncio Silva, S.; De Oliveira, M. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 1997, 28, 873–878. [Google Scholar] [CrossRef]
- Shebanova, O.N.; Lazor, P. Raman study of magnetite (Fe3O4): Laser-induced thermal effects and oxidation. J. Raman Spectrosc. 2003, 34, 845–852. [Google Scholar] [CrossRef]
- Francisco, M.; Teresa, C.; María, C.; Ramón, P.; Rolando, R.; Pedro, F.; José María, S.; Eduardo, E.; Carmen, M. Synthesis and characterization of monodisperse magnetite hollow microspheres. Soft Nanosci. Lett. 2011, 1, 25–32. [Google Scholar]
- Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Dorniani, D.; Hussein, M.Z.B.; Kura, A.U.; Fakurazi, S.; Shaari, A.H.; Ahmad, Z. Preparation of fe3o4 magnetic nanoparticles coated with gallic acid for drug delivery. Int. J. Nanomed. 2012, 7, 5745–5756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, H.-l.; Qi, X.-r.; Maitani, Y.; Nagai, T. Preparation and characterization of superparamagnetic iron oxide nanoparticles stabilized by alginate. Int. J. Pharm. 2007, 333, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Dorniani, D.; Bin, H.M.Z.; Kura, A.U.; Fakurazi, S.; Hussein-Al-Ali, S.H.; Shaari, A.H.; Ahmad, Z. In vitro sustained release study of gallic acid coated with magnetite-peg and magnetite-pva for drug delivery system. Sci. World J. 2014, 2014, 416354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iyengar, S.J.; Joy, M.; Ghosh, C.K.; Dey, S.; Kotnala, R.K.; Ghosh, S. Magnetic, X-ray and mossbauer studies on magnetite/maghemite core-shell nanostructures fabricated through an aqueous route. RSC Adv. 2014, 4, 64919–64929. [Google Scholar] [CrossRef] [Green Version]
- Zoete, V.; Daina, A.; Bovigny, C.; Michielin, O. Swisssimilarity: A web tool for low to ultra high throughput ligand-based virtual screening. J. Chem. Inf. Modeling 2016, 56, 1399–1404. [Google Scholar] [CrossRef]
- Daina, A.; Zoete, V. A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 2016, 11, 1117–1121. [Google Scholar] [CrossRef] [Green Version]
- Tortosa, V.; Pietropaolo, V.; Brandi, V.; Macari, G.; Pasquadibisceglie, A.; Polticelli, F. Computational methods for the identification of molecular targets of toxic food additives. Butylated hydroxytoluene as a case study. Molecules 2020, 25, 2229. [Google Scholar] [CrossRef]
Sample | Ms |
---|---|
IONP | 64.19 |
IONP@AO1 | 45.43 |
IONP@AO2 | 45.25 |
Sample | Fe | O | C | S |
---|---|---|---|---|
IONP | 69.4 | 30.6 | - | - |
IONP@AO1 | 61.7 | 25.1 | 13.4 | 0.1 |
IONP@AO2 | 65.9 | 25.4 | 8.3 | 0.1 |
Physicochemical Properties | ||
Formula | C23H38O6S | C25H42O7S |
MW | 442.61 | 486.66 |
#Heavy atoms | 30 | 33 |
#Aromatic heavy atoms | 6 | 6 |
Fraction Csp3 | 0.7 | 0.72 |
#Rotatable bonds | 15 | 18 |
#H-bond acceptors | 6 | 7 |
#H-bond donors | 2 | 2 |
MR | 122.63 | 133.33 |
TPSA | 110.52 | 119.75 |
Lipophilicity | ||
iLOGP | 4.57 | 4.78 |
XLOGP3 | 4.3 | 4.15 |
WLOGP | 3.64 | 3.65 |
MLOGP | 2.39 | 2.01 |
Silicos-IT Log P | 5.47 | 5.89 |
Consensus Log P | 4.07 | 4.1 |
Water Solubility | ||
ESOL Log S | −4.45 | −4.42 |
ESOL Solubility (mg/mL) | 1.57 × 10−2 | 1.86 × 10−2 |
ESOL Solubility (mol/L) | 3.54 × 10−5 | 3.82 × 10−5 |
ESOL Class | Moderately soluble | Moderately soluble |
Ali Log S | −6.33 | −6.37 |
Ali Solubility (mg/mL) | 2.05 × 10−4 | 2.06 × 10−4 |
Ali Solubility (mol/L) | 4.63 × 10−7 | 4.24 × 10−7 |
Ali Class | Poorly soluble | Poorly soluble |
Silicos-IT LogSw | −6.07 | −6.57 |
Silicos-IT Solubility (mg/mL) | 3.77 × 10−4 | 1.30 × 10−4 |
Silicos-IT Solubility (mol/L) | 8.51 × 10−7 | 2.67 × 10−7 |
Silicos-IT class | Poorly soluble | Poorly soluble |
Pharmacokinetics | ||
GI absorption | High | High |
BBB permeant | No | No |
Pgp substrate | No | No |
CYP1A2 inhibitor | No | No |
CYP2C19 inhibitor | No | No |
CYP2C9 inhibitor | No | No |
CYP2D6 inhibitor | Yes | No |
CYP3A4 inhibitor | Yes | Yes |
log Kp (cm/s) | −5.95 | −6.32 |
Druglikeness | ||
Lipinski #violations | 0 | 0 |
Ghose #violations | 0 | 3 |
Veber #violations | 1 | 1 |
Egan #violations | 0 | 0 |
Muegge #violations | 0 | 1 |
Bioavailability Score | 0.55 | 0.55 |
Medicinal Chemistry | ||
PAINS #alerts | 0 | 0 |
Brenk #alerts | 0 | 0 |
Leadlikeness #violations | 3 | 3 |
Synthetic Accessibility | 4.04 | 4.32 |
MPAO | ||
---|---|---|
a Pa | b Pi | Biological Activity |
0.410 | 0.017 | Free radical scavenger |
0.420 | 0.030 | Lipid peroxidase inhibitor |
0.301 | 0.023 | Antioxidant |
0.308 | 0.078 | Antifungal |
0.262 | 0.077 | Antibacterial |
IC50 a Values (mg) ± S.E.M b and Max. Inhibition % | |||
---|---|---|---|
Sample | IC50 mg/mL | % Inhibition | |
IONP | 5 mg | 4.7 ± 0.002 | 50 |
IONP@AO1 | 5 mg | 1.5 ± 0.002 | 79 |
IONP@AO2 | 5 mg | 2.4 ± 0.002 | 58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, S.T.; Chowdhury, Z.Z.; Johan, M.R.; Badruddin, I.A.; Alrobei, H.; Kamangar, S. Design and Synthesis of Multipotent Antioxidants for Functionalization of Iron Oxide Nanoparticles. Coatings 2022, 12, 517. https://doi.org/10.3390/coatings12040517
Shah ST, Chowdhury ZZ, Johan MR, Badruddin IA, Alrobei H, Kamangar S. Design and Synthesis of Multipotent Antioxidants for Functionalization of Iron Oxide Nanoparticles. Coatings. 2022; 12(4):517. https://doi.org/10.3390/coatings12040517
Chicago/Turabian StyleShah, Syed Tawab, Zaira Zaman Chowdhury, Mohd Rafie Johan, Irfan Anjum Badruddin, Hussein Alrobei, and Sarfaraz Kamangar. 2022. "Design and Synthesis of Multipotent Antioxidants for Functionalization of Iron Oxide Nanoparticles" Coatings 12, no. 4: 517. https://doi.org/10.3390/coatings12040517
APA StyleShah, S. T., Chowdhury, Z. Z., Johan, M. R., Badruddin, I. A., Alrobei, H., & Kamangar, S. (2022). Design and Synthesis of Multipotent Antioxidants for Functionalization of Iron Oxide Nanoparticles. Coatings, 12(4), 517. https://doi.org/10.3390/coatings12040517