Facile Route to Achieve Self-Supported Cu(OH)2/Ni3S2 Composite Electrode on Copper Foam for Enhanced Capacitive Energy Storage Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Cu(OH)2/Ni3S2 Composite Electrode
2.3. Characterization
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, M.Y.; Li, X.; Tu, C.Y.; Luo, Q.; Nie, Y.J.; Pan, J.M.; Li, S.J. Ethylene glycol assisted self-template conversion approach to synthesize hollow NiS microspheres for a high performance all-solid-state supercapacitor. Mater. Chem. Front. 2022, 6, 203–212. [Google Scholar] [CrossRef]
- Chen, J.S.; Guan, C.; Yang Gui, Y.; Blackwood, D.J. Rational Design of Self-Supported Ni3S2 Nanosheets Array for Advanced Asymmetric Supercapacitor with a Superior Energy Density. ACS Appl. Mater. Interfaces 2017, 1, 496–504. [Google Scholar] [CrossRef]
- Yang, D.D.; Zhao, M.; Zhang, R.D.; Zhang, Y.; Yang, C.C.; Jiang, Q. NiS2 nanoparticles anchored on open carbon nanohelmets as an advanced anode for lithium-ion batteries. Nanoscale Adv. 2020, 2, 512–519. [Google Scholar] [CrossRef] [Green Version]
- Kumar, Y.A.; Kumar, K.D.; Kim, H.E. A novel electrode for supercapacitors: Effiffifficient PVP-assisted synthesis of Ni3S2 nanostructures grown on Ni foam for energy storage. Dalton Trans. 2020, 49, 4050–4059. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.G.; Kannan, P.K.; Mateti, S.; Chung, C.H. Indirect Nanoconstruction Morphology of Ni3S2 Electrodes Renovates the Performance for Electrochemical Energy Storage. ACS Appl. Energy Mater. 2018, 12, 6945–6952. [Google Scholar] [CrossRef]
- Jiang, N.; Tang, Q.; Sheng, M.L.; You, B.; Jiang, D.E.; Sun, Y.J. Nickel sulfides for electrocatalytic hydrogen evolution under alkaline conditions: A case study of crystalline NiS, NiS2, and Ni3S2 nanoparticles. Catal. Sci. Technol. 2016, 6, 1077–1084. [Google Scholar] [CrossRef]
- Nie, X.; Kong, X.Z.; Selvakumaran, D.; Lou, L.Z.; Shi, J.R.; Zhu, T.; Liang, S.L.; Cao, G.Z.; Anqiang Pan, A.Q. Three-Dimensional Carbon-Coated Treelike Ni3S2 Superstructures on a Nickel Foam as Binder-Free Bifunctional Electrodes. ACS Appl. Mater. Interfaces 2018, 42, 36018–36027. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.M.; Fan, X.M.; Wang, Z.H.; Yang, Z.H.; Huang, C.; Zhang, W.X. Oriented-Redox Induced Uniform MnO2 Coating on Ni3S2 Nanorod Arrays as a Stable Anode for Enhanced Performances of Lithium Ion Battery. Langmuir 2020, 45, 13555–13562. [Google Scholar] [CrossRef]
- Wang, W.H.; Xie, F.Q.; Wu, X.Q.; Zhu, Z.; Wang, S.Q.; Tao Lv, T. Microstructure and Wear-Resistant Properties of Ni80Al20-MoS2 Composite Coating on Sled Track Slippers. Coatings 2020, 10, 651. [Google Scholar] [CrossRef]
- Xing, Z.C.; Chu, Q.X.; Ren, X.B.; Ge, C.J.; Qusti, A.H.; Asiri, A.M.; Al-Youbi, A.O.; Sun, X.P. Ni3S2 coated ZnO array for high-performance supercapacitors. J. Power Sources 2014, 245, 463–467. [Google Scholar] [CrossRef]
- Yang, P.; Feng, L.; Wang, S.H.; Shi, J.J.; Xing, H.L. Construction of core-shell Ni@Ni3S2@NiCo2O4 nanoflakes as advanced electrodes for high-performance hybrid supercapacitors. J. Phys. Chem. Solids 2021, 155, 110110. [Google Scholar] [CrossRef]
- Ren, J.; Shen, M.; Li, Z.L.; Yang, C.M.; Liang, Y.; Wang, H.E.; Li, J.H.; Li, N.; Qian, D. Towards high-performance all-solid-state asymmetric supercapacitors: A hierarchical doughnut-like Ni3S2@PPy core− shell heterostructure on nickel foam electrode and density functional theory calculations. J. Power Sources 2021, 501, 230003. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.C.; Liao, Y.F.; Wu, C.L.; Chen, Y.G. Hetero-structured V-Ni3S2@NiOOH core-shell nanorods from an electrochemical anodization for water splitting. J. Alloys Compd. 2021, 856, 158219. [Google Scholar] [CrossRef]
- He, D.; Wan, G.D.; Liu, G.L.; Bai, J.H.; Suo, H.; Zhao, C. Facile route to achieve mesoporous Cu(OH)2 nanorods on copper foam for high-performance supercapacitor electrode. J. Alloys Compd. 2017, 699, 706–712. [Google Scholar] [CrossRef]
- Zhu, D.; Yan, M.L.; Chen, R.R.; Liu, Q.; Liu, J.Y.; Yu, J.; Zhang, H.S.; Zhang, M.L.; Liu, P.L.; Li, J.Q.; et al. 3D Cu(OH)2 nanowires/carbon cloth for flexible supercapacitors with outstanding cycle stability. Chem. Eng. J. 2019, 371, 348–355. [Google Scholar] [CrossRef]
- Khatavkar, S.N.; Sartale, S.D. α-Fe2O3 thin film on stainless steel mesh: A flexible electrode for supercapacitor. Mater. Chem. Phys. 2019, 225, 284–291. [Google Scholar] [CrossRef]
- Liu, G.L.; He, X.; He, D.; Cui, B.Y.; Zhu, L.; Suo, H. Construction of CuO@Ni–Fe layered double hydroxide hierarchical core–shell nanorods arrays on copper foam for high-performance Supercapacitors. J. Mater. Sci. Mater. Electron. 2019, 30, 2080–2088. [Google Scholar] [CrossRef]
- Wang, H.N.; Yan, G.W.; Cao, X.Y.; Liu, Y.; Zhong, Y.X.; Cui, L.; Liu, J.Q. Hierarchical Cu(OH)2@MnO2 core-shell nanorods array in situ generated on three-dimensional copper foam for high-performance supercapacitors. J. Colloid Interf. Sci. 2020, 563, 394–404. [Google Scholar] [CrossRef]
- Naghdi, S.; Jaleh, B.; Ehsani, A. Electrophoretic Deposition of Graphene Oxide on Aluminum: Characterization, Low Thermal Annealing, Surface and Anticorrosive Properties. Bull. Chem. Soc. Jpn. 2015, 5, 722–728. [Google Scholar] [CrossRef]
- Anantharaj, S.; Sugime, H.; Noda, S. Ultrafast Growth of a Cu(OH)2–CuO Nanoneedle Array on Cu Foil for Methanol Oxidation Electrocatalysis. ACS Appl. Mater. Interfaces 2020, 24, 27327–27338. [Google Scholar] [CrossRef]
- Lv, S.; Shang, W.S.; Wang, H.; Chu, X.F.; Chi, Y.D.; Wang, C.; Yang, J.; Geng, P.Y.; Yang, X.T. Design and Construction of Cu(OH)2/Ni3S2 Composite Electrode on Cu Foam by Two-Step Electrodeposition. Micromachines 2022, 13, 237. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Tong, J.W.; Huang, C.H.; Wang, Y.Q. Preparation of micro mulberry leaf-like CoO@Ni3S2 for a high-rate supercapacitor. Mater. Lett. 2021, 282, 128711. [Google Scholar] [CrossRef]
- Li, Y.H.; Shi, M.; Wang, L.; Wang, M.R.; Li, J.; Cui, H.T. Tailoring synthesis of Ni3S2 nanosheets with high electrochemical performance by electrodeposition. Adv. Powder Technol. 2018, 5, 1092–1098. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Liu, H.; Rao, Y.; Li, X.X.; Wang, J.L.; Xia, G.S.; Wu, M.B. Carbon Dots Decorated Hierarchical NiCo2S4/Ni3S2 Composite for Efficient Water Splitting. ACS Sustain. Chem. Eng. 2019, 2, 2610–2618. [Google Scholar] [CrossRef]
- Xie, Z.J.; Liu, L.Y.; Li, Y.X.; Yu, D.Y.; Wei, L.H.; Han, L.Y.; Hua, Y.J.; Wang, C.T.; Zhao, X.D.; Liu, X.Y. Synthesis of core-shell structured Ni3S2@MnMoO4 nanosheet arrays on Ni foam for asymmetric supercapacitors with superior performance. J. Alloys Compd. 2021, 874, 159860–159869. [Google Scholar] [CrossRef]
- Satpathy, B.K.; Patnaik, S.; Pradhan, D. Room-Temperature Growth of Co(OH)2 Nanosheets on Nanobelt-like Cu(OH)2 Arrays for a Binder-Free High-Performance All-Solid-State Supercapacitor. ACS Appl. Energy Mater. 2022, 1, 77–87. [Google Scholar] [CrossRef]
- Tsai, H.C.; Vedhanarayanan, B.; Lin, T.W. Freestanding and Hierarchically Structured Au-Dendrites/3D-Graphene Scaffold Supports Highly Active and Stable Ni3S2 Electrocatalyst toward Overall Water Splitting. ACS Appl. Energy Mater. 2019, 5, 3708–3716. [Google Scholar] [CrossRef]
- Wang, L.; You, J.H.; Zhao, Y.; Bao, W.T. Core–shell CuO@NiCoMn-LDH supported by copper foam for high-performance supercapacitors. Dalton Trans. 2022, 51, 3314–3322. [Google Scholar] [CrossRef]
- Du, X.Q.; Ma, G.Y.; Wang, Y.H.; Hana, X.H.; Zhang, X.S. Controllable synthesis of Ni3S2@MOOH/NF (M = Fe, Ni, Cu, Mn and Co) hybrid structure for the efficient hydrogen evolution reaction. Dalton Trans. 2021, 50, 14001–14008. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Yu, Y.; Mu, Z.C.; Wang, Y.H.; Usman, A.; Jing, S.Y.; Xing, S.X. Urea-assisted enhanced electrocatalytic activity of MoS2-Ni3S2 for overall water splitting. Inorg. Chem. Front. 2020, 7, 3588–3597. [Google Scholar] [CrossRef]
- Ghosh, S.; Samanta, P.; Murmu, N.C.; Kuila, T. XPS Enhancement of the Electrochemical Performance of a Novel Binder-Free Ni3S2@Co3S4/Mn3O4-RGO Heterostructure through Crystallinity and Band Gap Modification for Flexible Supercapacitors. Energ. Fuel. 2021, 16, 13389–13401. [Google Scholar] [CrossRef]
- Sajjad, M.; Khan, Y. Rational design of self-supported Ni3S2 nanoparticles as a battery type electrode material for high-voltage (1.8 V) symmetric supercapacitor applications. CrystEngComm 2021, 23, 2869–2879. [Google Scholar] [CrossRef]
- Lin, Y.F.; Chen, X.Y.; Chang, P.; Liu, Z.L.; Ren, G.H.; Tao, J.G. Hierarchical design of Ni3S2@Co9S8 nanotubes for supercapacitors with long cycle-life and high energy density. J. Alloys Compd. 2022, 900, 163503. [Google Scholar] [CrossRef]
- Jia, L.N.; Du, G.H.; Han, D.; Hao, Y.W.; Zhao, W.Q.; Fan, Y.; Su, Q.M.; Ding, S.K.; Xu, B.S. Ni3S2/Cu–NiCo LDH heterostructure nanosheet arrays on Ni foam for electrocatalytic overall water splitting. J. Mater. Chem. A 2021, 9, 27639–27650. [Google Scholar] [CrossRef]
- Savita, L.P.; Shrikant, S.R.; Babasaheb, R.S. Cu(OH)2@Cd(OH)2 core-shell nanostructure: Synthesis to supercapacitor application. Thin Solid Films 2019, 692, 137584. [Google Scholar]
- Wang, J.S.; Hu, L.B.; Zhou, X.Y.; Zhang, S.; Qiao, Q.S.; Xu, L.; Tang, S.C. Three-Dimensional Porous Network Electrodes with Cu(OH)2 Nanosheet/Ni3S2 Nanowire 2D/1D Heterostructures for Remarkably Cycle-Stable Supercapacitors. ACS Omega 2021, 50, 34276–34285. [Google Scholar] [CrossRef]
- Gong, S.J.; Liu, X.Y.; Yue, X.; Zhu, D.D.; Qi, J.Q.; Meng, Q.K.; Sui, Y.W.; Zhang, H.; Zhu, L. Needle-like Cu(OH)2 in situ grown on nanoporous copper ribbon via anodizing route for supercapacitors. Mater. Chem. Phys. 2022, 283, 126046. [Google Scholar] [CrossRef]
- Shen, M.; Liu, J.L.; Liu, T.C.; Yang, C.M.; He, Y.X.; Li, Z.L.; Li, J.H.; Qian, D. Oxidant-assisted direct-sulfidization of nickel foam toward a self-supported hierarchical Ni3S2@Ni electrode for asymmetric all-solid-state supercapacitors. J. Power Sources 2019, 448, 227408–227416. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, Z.D.; Huang, F.Z.; Zhang, H.; Li, S.K. Hierarchical Cu(OH)2@Ni2(OH)2CO3 core/shell nanowire arrays in situ grown on three-dimensional copper foam for high-performance solid-state supercapacitors. J. Mater. Chem. A 2017, 5, 9960–9969. [Google Scholar] [CrossRef]
- Song, X.Q.; Emin, A.; Chen, Y.; Yang, M.Z.; Zou, S.T.; Du, Y.H.; Fu, Y.J.; Li, Y.L.; Li, Y.T.; Li, J.S.; et al. Mn(OH)2-coated Ni3S2 nanosheets on Ni foam as a cathode for high-performance aqueous asymmetric supercapacitors. J. Energy Storage 2022, 51, 104513. [Google Scholar] [CrossRef]
- Huang, J.; Wei, J.C.; Xiao, Y.B.; Xu, Y.Z.; Xiao, Y.J.; Wang, Y.; Tan, L.C.; Yuan, K.; Chen, Y.W. When Al-Doped Cobalt Sulfide Nanosheets Meet Nickel Nanotube Arrays: A Highly Efficient and Stable Cathode for Asymmetric Supercapacitors. ACS Nano 2018, 12, 3030–3041. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.B.; Li, W.N.; Zou, X.F.; Xiang, B. Nickel hydroxide/sulfide hybrids: Halide ion controlled synthesis, structural characteristics, and electrochemical performance. Dalton Trans. 2022, 51, 4153–4165. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, H.; Xu, J.Z.; Jaber, F.; Musharavati, F.; Zalezhad, E.; Bae, S.; Hui, K.S.; Hui, K.N.; Liu, J.X. Synthesis and Characterization of a NiCo2O4@NiCo2O4 Hierarchical Mesoporous Nanoflflake Electrode for Supercapacitor Applications. Nanomaterials 2020, 10, 1292. [Google Scholar] [CrossRef] [PubMed]
Electrode Material | Substrate | Current Density (mA cm−2) | Specific Capacitance (F cm−2) | Refs. |
---|---|---|---|---|
Cu(OH)2 | copper foam | 2 | 2.15 | [14] |
Cu(OH)2 | nanoporous copper | 3 | 0.78 | [37] |
Ni3S2 | nickel foam | 1 | 2.52 | [38] |
Cu(OH)2/Ni3S2 | copper foam | 2 | 4.85 | [21] |
Cu(OH)2@Co(OH)2 | copper foam | 4 | 0.43 | [26] |
Cu(OH)2@Ni2(OH)2CO3 | copper foam | 1 | 1.09 | [39] |
Ni3S2@ppy | nickel foam | 2 | 3.15 | [12] |
Ni3S2@Co9S8 | nickel foam | 2 | 9.79 | [33] |
Ni3S2@Mn(OH)2 | nickel foam | 1 | 6.43 | [40] |
Cu(OH)2/Ni3S2 | copper foam | 2 | 11.43 | this work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, S.; Geng, P.; Chi, Y.; Wang, H.; Chu, X.; Chen, G.; Shang, W.; Wang, C.; Yang, J.; Cheng, Z.; et al. Facile Route to Achieve Self-Supported Cu(OH)2/Ni3S2 Composite Electrode on Copper Foam for Enhanced Capacitive Energy Storage Performance. Coatings 2022, 12, 529. https://doi.org/10.3390/coatings12040529
Lv S, Geng P, Chi Y, Wang H, Chu X, Chen G, Shang W, Wang C, Yang J, Cheng Z, et al. Facile Route to Achieve Self-Supported Cu(OH)2/Ni3S2 Composite Electrode on Copper Foam for Enhanced Capacitive Energy Storage Performance. Coatings. 2022; 12(4):529. https://doi.org/10.3390/coatings12040529
Chicago/Turabian StyleLv, Sa, Peiyu Geng, Yaodan Chi, Huan Wang, Xuefeng Chu, Gongda Chen, Wenshi Shang, Chao Wang, Jia Yang, Zhifei Cheng, and et al. 2022. "Facile Route to Achieve Self-Supported Cu(OH)2/Ni3S2 Composite Electrode on Copper Foam for Enhanced Capacitive Energy Storage Performance" Coatings 12, no. 4: 529. https://doi.org/10.3390/coatings12040529
APA StyleLv, S., Geng, P., Chi, Y., Wang, H., Chu, X., Chen, G., Shang, W., Wang, C., Yang, J., Cheng, Z., & Yang, X. (2022). Facile Route to Achieve Self-Supported Cu(OH)2/Ni3S2 Composite Electrode on Copper Foam for Enhanced Capacitive Energy Storage Performance. Coatings, 12(4), 529. https://doi.org/10.3390/coatings12040529