Enhanced Anti-Tribocorrosion Performance of Ti-DLC Coatings Deposited by Filtered Cathodic Vacuum Arc with the Optimization of Bias Voltage
Abstract
:1. Introduction
2. Experimental Methods
2.1. Coating Preparation
2.2. Coating Characterization
2.3. Tribocorrosion Experiments
3. Results and Discussion
3.1. Characteristics of Ti-DLC Coating
3.2. Mechanical Properties
3.3. Tribocorrosion Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dalmau, A.; Richard, C.; Igual-Muñoz, A. Degradation mechanisms in martensitic stainless steels: Wear, corrosion and tribocorrosion appraisal. Tribol. Int. 2018, 121, 167–179. [Google Scholar] [CrossRef]
- Stachowiak, A.; Zwierzycki, W. Tribocorrosion modeling of stainless steel in a sliding pair of pin-on-plate type. Tribol. Int. 2011, 44, 1216–1224. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, X.; Wang, J.; Yan, F. Influence of microstructure evolution on tribocorrosion of 304SS in artificial seawater. Corros. Sci. 2014, 88, 423–433. [Google Scholar] [CrossRef]
- Liu, Z.X.; Li, Y.; Xie, X.H.; Qin, J.; Wang, Y. The tribo-corrosion behavior of monolayer VN and multilayer VN/C hard coatings under simulated seawater. Ceram. Int. 2021, 47, 25655–25663. [Google Scholar] [CrossRef]
- Ma, F.; Li, J.; Zeng, Z.; Gao, Y. Structural, mechanical and tribo-corrosion behaviour in artificial seawater of CrN/AlN nano-multilayer coatings on F690 steel substrates. Appl. Surf. Sci. 2018, 428, 404–414. [Google Scholar] [CrossRef]
- Shao, T.; Ge, F.; Dong, Y.; Li, K.; Li, P.; Sun, D.; Huang, F. Microstructural effect on the tribo-corrosion behaviors of magnetron sputtered CrSiN coatings. Wear 2018, 416–417, 44–53. [Google Scholar] [CrossRef]
- Liu, Z.; Ye, Y.; Jiang, Z.; Chen, H.; Song, W.; Liu, Z.; Jia, Y.; Zhu, J. Achieving high anti-wear ability of V–C–N coatings in seawater by carbon content design. Ceram. Int. 2020, 46, 6612–6620. [Google Scholar] [CrossRef]
- Viswanathan, S.; Mohan, L.; Parthasarathi, B.; Shanthiswaroop, S.; Muniprakash, M.; Barshilia, H.C.; Anandan, C. Corrosion and wear resistance properties of multilayered diamond-like carbon nanocomposite coating. Surf. Interface Anal. 2018, 50, 265–276. [Google Scholar] [CrossRef]
- Tyagi, A.; Walia, R.S.; Murtaza, Q.; Pandey, S.M.; Tyagi, P.K.; Bajaj, B. A critical review of diamond like carbon coating for wear resistance applications. Int. J. Refract. Met. Hard Mater. 2019, 78, 107–122. [Google Scholar] [CrossRef]
- Vetter, J. 60 years of DLC coatings: Historical highlights and technical review of cathodic arc processes to synthesize various DLC types, and their evolution for industrial applications. Surf. Coat. Technol. 2014, 257, 213–240. [Google Scholar] [CrossRef]
- Gawel, R.; Kyziol, K.; Jurasz, Z.; Grzesik, Z. Oxidation resistance of valve steels covered with thin SiC coatings, obtained by RF CVD. Corros. Sci. 2018, 145, 16–25. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Zhou, S.; Wang, Y.; Wang, C.; Guo, W.; Lu, X.; Wang, L. Tailoring self-lubricating, wear-resistance, anticorrosion and antifouling properties of Ti/(Cu, MoS2)-DLC coating in marine environment by controlling the content of Cu dopant. Tribol. Int. 2020, 143, 106029. [Google Scholar] [CrossRef]
- Cao, H.S.; Ye, X.; Qi, F.G.; Ouyang, X.P.; Zhao, N.; Liao, B. Microstructure, mechanical and tribological properties of multilayer Ti-DLC thick films on Al alloys by filtered cathodic vacuum arc technology. Mater. Des. 2021, 198, 109320. [Google Scholar] [CrossRef]
- Zhang, S.D.; Yan, M.F.; Yang, Y.; Zhang, Y.X.; Yan, F.; Li, H. Excellent mechanical, tribological and anti-corrosive performance of novel Ti-DLC nanocomposite thin films prepared via magnetron sputtering method. Carbon 2019, 151, 136–147. [Google Scholar] [CrossRef]
- Shen, Y.Q.; Luo, J.; Liao, B.; Zhang, X.; Zhao, Y.; Zeng, X.; Chen, L.; Pang, P.; Bao, F. Tribocorrosion and tribological behavior of Ti-DLC coatings deposited by filtered cathodic vacuum arc. Diam. Relat. Mater. 2022, 125, 108985. [Google Scholar] [CrossRef]
- Zhang, K.; Wen, M.; Meng, Q.N.; Hu, C.Q.; Li, X.; Liu, C.; Zheng, W.T. Effects of substrate bias voltage on the microstructure, mechanical properties and tribological behavior of reactive sputtered niobium carbide films. Surf. Coat. Tech. 2012, 212, 185–191. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, G.J.; Ma, H.; Lin, G.Q. Effect of pulsed bias voltage on the structure and mechanical properties of Ti–C–N composite films by pulsed bias arc ion plating. Nucl. Instrum. Meth. B 2014, 333, 1–5. [Google Scholar] [CrossRef]
- Yate, L.; Martínez-de-Olcoz, L.; Esteve, J.; Lousa, A. Effect of the bias voltage on the structure of nc-CrC/a-C: H coatings with high carbon content. Surf. Coat. Tech. 2012, 206, 2877–2883. [Google Scholar] [CrossRef]
- Dai, W.; Zheng, H.; Wu, G.S.; Wang, A.Y. Effect of bias voltage on growth property of Cr-DLC film prepared by linear ion beam deposition technique. Vacuum 2010, 85, 231–235. [Google Scholar] [CrossRef]
- Khamseh, S.; Alibakhshi, E.; Ramezanzadeh, B.; Sari, M. A tailored pulsed substrate bias voltage deposited (a-C: Nb) thin-film coating on GTD-450 stainless steel: Enhancing mechanical and corrosion protection characteristics. Chem. Eng. J. 2021, 404, 126490. [Google Scholar] [CrossRef]
- Sheeja, D.; Tay, B.K.; Yu, L.J.; Lau, S.P.; Sze, J.Y.; Cheong, C.K. Effect of frequency and pulse width on the properties of ta: C films prepared by FCVA together with substrate pulse biasing. Thin Solid Film. 2002, 420, 62–69. [Google Scholar] [CrossRef]
- Shen, Y.Q.; Zhou, H.; Wang, H.Q.; Liao, B.; Zhang, X. Tribological behavior of diamond-like carbon coatings with patterned structure deposited by the filtered cathodic vacuum arc. Thin Solid Film. 2019, 685, 123–130. [Google Scholar] [CrossRef]
- Peng, X.L.; Barber, Z.H.; Clyne, T.W. Surface roughness of diamond-like carbon films prepared using various techniques. Surf. Coat. Technol. 2001, 138, 23. [Google Scholar] [CrossRef]
- Pelleg, J.; Zevin, L.Z.; Lungo, S.; Croitoru, N. Reactive-sputter-deposited TiN films on glass substrates. Thin Solid Film. 1991, 197, 117–128. [Google Scholar] [CrossRef]
- Barna, P.; Adamik, M.; Labar, J.; Kover, L.; Toth, J.; Devenyi, A.; Manaila, R. Formation of polycrystalline and microcrystalline composite thin films by codeposition and surface chemical reaction. Surf. Coat. Technol. 2000, 125, 147–150. [Google Scholar] [CrossRef]
- Alawajji, R.A.; Kannarpady, G.K.; Nima, Z.A.; Kelly, N.; Watanabe, F.; Biris, A.S. Electrical properties of multilayer (DLC-TiC) films produced by pulsed laser deposition. Appl. Surf. Sci. 2018, 437, 429–440. [Google Scholar] [CrossRef]
- Cui, J.; Qiang, L.; Zhang, B.; Ling, X.; Yang, T.; Zhang, J. Mechanical and tribological properties of Ti-DLC films with different Ti content by magnetron sputtering technique. Appl. Surf. Sci. 2012, 258, 5025–5530. [Google Scholar] [CrossRef]
- Zhao, S.S.; Gao, X.H.; Qiu, X.L.; Yu, D.M.; Tian, G.K. A novel TiC-TiN based spectrally selective absorbing coating: Structure, optical properties and thermal stability. Infrared Phys. Technol. 2020, 110, 1350–4495. [Google Scholar] [CrossRef]
- Viswanathan, S.; Reddy, M.M.; Mohan, L.; Bera, P.; Barshilia, H.C.; Anandan, C. Corrosion and Wear Properties of Ti/Tetrahedral Amorphous Carbon Multilayered Coating. J. Bio. Tribo. Corros. 2017, 3, 39. [Google Scholar] [CrossRef]
- Dang, C.; Li, J.; Wang, Y.; Chen, J. Structure, mechanical and tribological properties of self-toughening TiSiN/Ag multilayer coatings on Ti6Al4V prepared by arc ion plating. Appl. Surf. Sci. 2016, 386, 224–233. [Google Scholar] [CrossRef]
- Leyland, A.; Matthews, A. On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimised tribological behavior. Wear 2000, 246, 1–11. [Google Scholar] [CrossRef]
- Ye, Y.W.; Jiang, Z.L.; Zou, Y.J.; Guo, S.D.; Zeng, X.; Yi, Z.; Yu, J.; Gui, J.; Liu, T.; Chen, H. Enhanced anti-wear property of VCN coating in seawater with the optimization of bias voltage. Ceram. Int. 2020, 46, 7939–7946. [Google Scholar] [CrossRef]
- Hu, J.J.; Zhang, J.Y.; Jiang, Z.H.; Ding, X.; Zhang, Y.; Han, S.; Sun, J.; Lian, J. Plastic deformation behavior during unloading in compressive cyclic test of nanocrystalline copper. Mater. Sci. Eng. A 2016, 651, 999–1009. [Google Scholar] [CrossRef]
- Wang, Y.X.; Wang, L.P.; Zhang, G.G.; Wang, S.C.; Wood, R.J.K.; Xue, Q.J. Effect of bias voltage on microstructure and properties of Ti-doped graphite-like carbon films synthesized by magnetron sputtering. Surf. Coat. Technol. 2010, 205, 793–800. [Google Scholar] [CrossRef]
- Wang, Q.M.; Kim, K.H. Microstructural control of Cr–Si–N films by a hybrid arc ion plating and magnetron sputtering process. Acta Mater. 2009, 57, 4974–4987. [Google Scholar] [CrossRef]
- Guo, J.; Liu, Z.J.; Wang, S.W.; Shen, Y.G. The grain refining effect of energy competition and the amorphous phase in nanocomposite materials. Scr. Mater. 2013, 69, 662–665. [Google Scholar] [CrossRef]
- Díaz, B.; Härkönen, E.; Światowska, J.; Maurice, V.; Seyeux, A.; Marcus, P.; Ritala, M. Low-temperature atomic layer deposition of Al2O3 thin coatings for corrosion protection of steel: Surface and electrochemical analysis. Corros. Sci. 2011, 53, 2168–2175. [Google Scholar] [CrossRef]
- Matthes, B.; Broszeit, E.; Aromaa, J.; Ronkainen, H.; Hannula, S.-P.; Leyland, A.; Matthews, A. Corrosion performance of some titanium-based hard coatings. Surf. Coat. Technol. 1991, 49, 489–495. [Google Scholar] [CrossRef]
- Ye, Y.; Liu, Z.; Liu, W.; Zhang, D.; Zhao, H.; Wang, L.; Li, X. Superhydrophobic oligoaniline-containing electroactive silica coating as pre-process coating for corrosion protection of carbon steel. Chem. Eng. J. 2018, 348, 940–951. [Google Scholar] [CrossRef]
- Ye, Y.; Zhang, D.; Liu, T.; Liu, Z.; Liu, W.; Pu, J.; Chen, H.; Zhao, H.; Li, X. Improvement of anticorrosion ability of epoxy matrix in simulate marine environment by filled with superhydrophobic POSS-GO nanosheets. J. Hazard. Mater. 2019, 364, 244–255. [Google Scholar] [CrossRef]
- Manhabosco, T.M.; Müller, I.L. Tribocorrosion of Diamond-Like Carbon Deposited on Ti6Al4V. Tribol. Lett. 2009, 33, 193–197. [Google Scholar] [CrossRef]
- Hübler, R.; Schröer, A.; Ensinger, W.; Wolf, G.K.; Schreiner, W.H.; Baumvol, I.J.R. Plasma and ion-beam-assisted deposition of multilayers for tribological and corrosion protection. Surf. Coat. Technol. 1993, 60, 561–565. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.L.; Dang, C.Q.; Wang, Y.X.; Zhu, Y. Influence of carbon contents on the structure and tribocorrosion properties of TiSiCN coatings on Ti6Al4V. Tribol. Int. 2017, 109, 285–296. [Google Scholar] [CrossRef]
- Warcholinski, B.; Gilewicz, A. Multilayer coatings on tools for woodworking. Wear 2011, 271, 2812–2820. [Google Scholar] [CrossRef]
Sample | Bias Voltage (V) | Composition (at.%) | Thickness (μm) | Amorphous Carbon Content (%) | ||
---|---|---|---|---|---|---|
Ti | C | O | ||||
1 | −50 | 23.9 | 69.3 | 6.8 | 1.12 | 52.5 |
2 | −100 | 23.6 | 70.2 | 6.2 | 1.15 | 53.8 |
3 | −200 | 23.2 | 70.8 | 6.0 | 1.08 | 54.3 |
4 | −300 | 22.5 | 71.3 | 6.2 | 1.07 | 55.3 |
Specimens | Corrosion-only | Sliding | |||||
---|---|---|---|---|---|---|---|
Icorr (×10−7 A/cm2) | Ecorr (V) | Rp (×108 Ω·cm2) | Icorr (×10−7 A/cm2) | Ecorr (V) | Rp (×108 Ω·cm2) | Porosity | |
Steel | 13.75 | −0.29 | 0.47 | 20.52 | −0.50 | 0.21 | / |
−50 | 2.85 | −0.10 | 4.12 | 3.21 | −0.23 | 2.55 | 9.1 |
−100 | 2.72 | −0.10 | 4.85 | 2.81 | −0.22 | 3.51 | 6.1 |
−200 | 1.97 | −0.17 | 5.21 | 2.12 | −0.19 | 3.98 | 6.5 |
−300 | 3.28 | 0.12 | 3.02 | 8.08 | −0.09 | 2.64 | 8.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.; Luo, J.; Liao, B.; Chen, L.; Zhang, X.; Zhao, Y.; Pang, P.; Zeng, X. Enhanced Anti-Tribocorrosion Performance of Ti-DLC Coatings Deposited by Filtered Cathodic Vacuum Arc with the Optimization of Bias Voltage. Coatings 2022, 12, 697. https://doi.org/10.3390/coatings12050697
Shen Y, Luo J, Liao B, Chen L, Zhang X, Zhao Y, Pang P, Zeng X. Enhanced Anti-Tribocorrosion Performance of Ti-DLC Coatings Deposited by Filtered Cathodic Vacuum Arc with the Optimization of Bias Voltage. Coatings. 2022; 12(5):697. https://doi.org/10.3390/coatings12050697
Chicago/Turabian StyleShen, Yongqing, Jun Luo, Bin Liao, Lin Chen, Xu Zhang, Yuanyuan Zhao, Pan Pang, and Xinmiao Zeng. 2022. "Enhanced Anti-Tribocorrosion Performance of Ti-DLC Coatings Deposited by Filtered Cathodic Vacuum Arc with the Optimization of Bias Voltage" Coatings 12, no. 5: 697. https://doi.org/10.3390/coatings12050697
APA StyleShen, Y., Luo, J., Liao, B., Chen, L., Zhang, X., Zhao, Y., Pang, P., & Zeng, X. (2022). Enhanced Anti-Tribocorrosion Performance of Ti-DLC Coatings Deposited by Filtered Cathodic Vacuum Arc with the Optimization of Bias Voltage. Coatings, 12(5), 697. https://doi.org/10.3390/coatings12050697