Effects of W Content on Structural and Mechanical Properties of TaWN Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Chemical Compositions and Phases
3.2. Chemical Bonding
3.3. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shin, C.S.; Kim, Y.W.; Gall, D.; Greene, J.E.; Petrov, I. Phase composition and microstructure of polycrystalline and epitaxial TaNxlayers grown on oxidized Si(001) and MgO(001) by reactive magnetron sputter deposition. Thin Solid Films 2002, 402, 172–182. [Google Scholar] [CrossRef]
- Li, H.; Li, J.; Yan, C.; Huang, J.; Kong, J.; Wu, Q.; Shi, Y.; Xiong, D. Deposition and mechanical properties of δ-TaNx films with different stoichiometry by DC magnetron sputtering. Surf. Coat. Technol. 2020, 404, 126452. [Google Scholar] [CrossRef]
- Baker, C.C.; Shah, S.I. Reactive sputter deposition of tungsten nitride thin films. J. Vac. Sci. Technol. A 2002, 20, 1699–1703. [Google Scholar] [CrossRef]
- Lou, B.S.; Moirangthem, I.; Lee, J.W. Fabrication of tungsten nitride thin films by superimposed HiPIMS and MF system: Effects of nitrogen flow rate. Surf. Coat. Technol. 2020, 393, 125743. [Google Scholar] [CrossRef]
- Inspektor, A.; Salvador, P.A. Architecture of PVD coatings for metalcutting applications: A review. Surf. Coat. Technol. 2014, 257, 138–153. [Google Scholar] [CrossRef]
- Nordin, M.; Ericson, F. Growth characteristics of multilayered physical vapour deposited TiN/TaNx on high speed steel substrate. Thin Solid Films 2001, 385, 174–181. [Google Scholar] [CrossRef]
- Chen, Y.I.; Lin, B.L.; Kuo, Y.C.; Huang, J.C.; Chang, L.C.; Lin, Y.T. Preparation and annealing study of TaNx coatings on WC-Co substrates. Appl. Surf. Sci. 2011, 257, 6741–6749. [Google Scholar] [CrossRef]
- Riekkinen, T.; Molarius, J.; Laurila, T.; Nurmela, A.; Suni, I.; Kivilahti, J.K. Reactive sputter deposition and properties of TaxN thin films. Microelectron. Eng. 2002, 64, 289–297. [Google Scholar] [CrossRef]
- Dalili, N.; Liu, Q.; Ivey, D.G. Thermal and electrical stability of TaNx diffusion barriers for Cu metallization. J. Mater. Sci. 2013, 48, 489–501. [Google Scholar] [CrossRef]
- Leng, Y.X.; Sun, H.; Yang, P.; Chen, J.Y.; Wang, J.; Wan, G.J.; Huang, N.; Tian, X.B.; Wang, L.P.; Chu, P.K. Biomedical properties of tantalum nitride films synthesized by reactive magnetron sputtering. Thin Solid Films 2001, 398–399, 471–475. [Google Scholar] [CrossRef]
- Jiang, P.C.; Chen, J.S.; Lin, Y.K. Structural and electrical characteristics of W–N thin films prepared by reactive rf sputtering. J. Vac. Sci. Technol. A 2003, 21, 616–622. [Google Scholar] [CrossRef]
- Lee, G.R.; Lee, J.J.; Shin, C.S.; Petrov, I.; Greene, J.E. Self-organized lamellar structured tantalum–nitride by UHV unbalanced-magnetron sputtering. Thin Solid Films 2005, 475, 45–48. [Google Scholar] [CrossRef]
- Li, T.C.; Lwo, B.J.; Pu, N.W.; Yu, S.P.; Kao, C.H. The effects of nitrogen partial pressure on the properties of the TaNx films deposited by reactive magnetron sputtering. Surf. Coat. Technol. 2006, 201, 1031–1036. [Google Scholar] [CrossRef]
- Bernoulli, D.; Müller, U.; Schwarzenberger, M.; Hauert, R.; Spolenak, R. Magnetron sputter deposited tantalum and tantalum nitride thin films: An analysis of phase, hardness and composition. Thin Solid Films 2013, 548, 157–161. [Google Scholar] [CrossRef]
- Yang, Y.H.; Chen, D.J.; Wu, F.B. Microstructure, hardness, and wear resistance of sputtering TaN coating by controlling RF input power. Surf. Coat. Technol. 2016, 303, 32–40. [Google Scholar] [CrossRef]
- Chim, Y.C.; Ding, X.Z.; Zeng, X.T.; Zhang, S. Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc. Thin Solid Films 2009, 517, 4845–4849. [Google Scholar] [CrossRef]
- Tang, J.F.; Lin, C.Y.; Yang, F.C.; Chang, C.L. Influence of nitrogen content and bias voltage on residual stress and the tribological and mechanical properties of CrAlN films. Coatings 2020, 10, 546. [Google Scholar] [CrossRef]
- Lin, C.H.; Duh, J.G.; Yau, B.S. Processing of chromium tungsten nitride hard coatings for glass molding. Surf. Coat. Technol. 2006, 201, 1316–1322. [Google Scholar] [CrossRef]
- Huang, A.; Xie, Z.; Li, K.; Chen, Q.; Chen, Y.; Gong, F. Thermal stability of CrWN glass molding coatings after vacuum annealing. Coatings 2020, 10, 198. [Google Scholar] [CrossRef] [Green Version]
- Chang, L.C.; Chang, C.Y.; Chen, Y.I. Mechanical properties and oxidation resistance of reactively sputtered Ta1−xZrxNy thin films. Surf. Coat. Technol. 2015, 280, 27–36. [Google Scholar] [CrossRef]
- Wei, C.T.; Shieh, H.P.D. Effects of processing variables on tantalum nitride by reactive-ion-assisted magnetron sputtering deposition. Jpn. J. Appl. Phys. 2006, 45, 6405–6410. [Google Scholar] [CrossRef]
- Hones, P.; Sanjinés, R.; Lévy, F. Sputter deposited chromium nitride based ternary compounds for hard coatings. Thin Solid Films 1998, 332, 240–246. [Google Scholar] [CrossRef]
- Čekada, M.; Panjan, P.; Navinšek, B.; Cvelbar, F. Characterization of (Cr,Ta)N hard coatings reactively sputtered at low temperature. Vacuum 1999, 52, 461–467. [Google Scholar] [CrossRef]
- Zhao, X.; Li, H.; Li, J.; Hu, J.; Huang, J.; Kong, J.; Wu, Q.; Shi, Y.; Xiong, D. Mechanical and tribological behaviors of hard and tough TaxHf1−xN films with various Ta contents. Surf. Coat. Technol. 2020, 403, 126412. [Google Scholar] [CrossRef]
- Xu, J.; Xue, Y.; Cao, J.; Yu, L. Microstructures, Mechanical and Friction Properties of TaMoN Composite Films. Rare Metal Mater. Eng. 2014, 43, 1412–1416. [Google Scholar]
- Yang, J.F.; Jiang, Y.; Yuan, Z.G.; Wang, X.P.; Fang, Q.F. Manufacture, microstructure and mechanical properties of W–Ta–N nano-structured hard films. Appl. Surf. Sci. 2012, 258, 7849–7854. [Google Scholar] [CrossRef]
- Xu, J.; Luo, H.; Ju, H.; Yu, L.; Zhou, G. Microstructure, mechanical and tribological properties of TaWN composite films. Vacuum 2017, 146, 246–251. [Google Scholar] [CrossRef]
- Liu, Y.; Song, S.; Mao, D.; Ling, H.; Li, M. Diffusion barrier performance of reactively sputtered Ta–W–N between Cu and Si. Microelectron. Eng. 2004, 75, 309–315. [Google Scholar] [CrossRef]
- Takeyama, M.B.; Sato, M.; Yasuda, M. Relationship between 〈111〉-oriented Cu film and thin Ta–W–N barrier. Jpn. J. Appl. Phys. 2020, 59, SLLD02. [Google Scholar] [CrossRef]
- Chang, L.C.; Zheng, Y.Z.; Gao, Y.X.; Chen, Y.I. Mechanical properties and oxidation resistance of sputtered Cr–W–N coatings. Surf. Coat. Technol. 2017, 320, 196–200. [Google Scholar] [CrossRef]
- Yang, J.F.; Yuan, Z.G.; Wang, X.P.; Fang, Q.F. Characterization of W–Ta–N hard films synthesized by direct current magnetron sputtering. Surf. Coat. Technol. 2013, 231, 19–23. [Google Scholar] [CrossRef]
- Chen, Y.I.; Lin, K.Y.; Wang, H.H.; Cheng, Y.R. Characterization of Ta–Si–N coatings prepared using direct current magnetron co-sputtering. Appl. Surf. Sci. 2014, 305, 805–816. [Google Scholar] [CrossRef]
- Tong, C.Y.; Lee, J.W.; Kuo, C.C.; Huang, S.H.; Chan, Y.C.; Chen, H.W.; Duh, J.G. Effects of carbon content on the microstructure and mechanical property of cathodic arc evaporation deposited CrCN thin films. Surf. Coat. Technol. 2013, 231, 482–486. [Google Scholar] [CrossRef]
- Cullity, B.D.; Stock, S.R. Elements of X-ray Diffraction, 3rd ed.; Prentice-Hall: Hoboken, NJ, USA, 2001; pp. 169–170. [Google Scholar]
- Greczynski, G.; Hultman, L. C1s peak of adventitious carbon aligns to the vacuum level: Dire consequences for material’s bonding assignment by photoelectron spectroscopy. Chem. Phys. Chem. 2017, 18, 1507–1512. [Google Scholar] [CrossRef]
- Greczynski, G.; Hultman, L. Reliable determination of chemical state in X-ray photoelectron spectroscopy based on sample-work-function referencing to adventitious carbon: Resolving the myth of apparent constant binding energy of the C 1s peak. Appl. Surf. Sci. 2018, 451, 99–103. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy; Chastain, J., King, R.C., Eds.; Physical Electronics: Chanhassen, MN, USA, 1995. [Google Scholar]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Janssen, G.C.A.M.; Abdalla, M.M.; van Keulen, F.; Pujada, B.R.; van Venrooy, B. Celebrating the 100th anniversary of the Stoney equation for film stress: Developments from polycrystalline steel strips to single crystal silicon wafers. Thin Solid Films 2009, 517, 1858–1867. [Google Scholar] [CrossRef]
- Thod, L.E. Transition Metal Carbides and Nitrides; Academic Press: New York, NY, USA, 1971. [Google Scholar]
- Barin, I. Thermochemical Data of Pure Substances, 3rd ed.; VCH: New York, NY, USA, 1995. [Google Scholar]
- de Boer, F.R.; Boom, R.; Mattens, W.C.M.; Miedema, A.R.; Niessen, A.K. Transition Metal Alloys; North-Holland: Amsterdam, The Netherlands, 1988. [Google Scholar]
- Senkov, O.N.; Miracle, D.B. Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys. Mater. Res. Bull. 2001, 36, 2183–2198. [Google Scholar] [CrossRef]
- Chang, C.C.; Jeng, J.S.; Chen, J.S. Microstructural and electrical characteristics of reactively sputtered Ta-N thin films. Thin Solid Films 2002, 413, 46–51. [Google Scholar] [CrossRef]
- Arranz, A.; Palacio, C. Composition of tantalum nitride thin films grown by low-energy nitrogen implantation: A factor analysis study of the Ta 4 f XPS core level. Appl. Phys. A 2005, 81, 1405–1410. [Google Scholar] [CrossRef] [Green Version]
- Scandurra, A.; Indelli, G.F.; Pignataro, B.; Di Marco, S.; Di Stefano, M.A.; Ravesi, S.; Pignataro, S. Tantalum nitride thin film resistors by low temperature reactive sputtering for plastic electronics. Surf. Interface Anal. 2008, 40, 758–762. [Google Scholar] [CrossRef]
- Arshi, N.; Lu, J.; Joo, Y.K.; Yoon, J.H.; Koo, B.H. Effects of nitrogen composition on the resistivity of reactively sputtered TaN thin films. Surf. Interface Anal. 2015, 47, 154–160. [Google Scholar] [CrossRef]
- Zaman, A.; Meletis, E.I. Microstructure and mechanical properties of TaN thin films prepared by reactive magnetron sputtering. Coatings 2017, 7, 209. [Google Scholar] [CrossRef] [Green Version]
- Wen, M.; Meng, Q.N.; Yu, W.X.; Zheng, W.T.; Mao, S.X.; Hua, M.J. Growth, stress and hardness of reactively sputtered tungsten nitride thin films. Surf. Coat. Technol. 2010, 205, 1953–1961. [Google Scholar] [CrossRef]
- Fu, T.; Shen, Y.G.; Zhou, Z.F.; Li, K.Y. Thermal stability of sputter deposited nanocrystalline W2N/amorphous Si3N4 coatings. J. Vac. Sci. Technol. A 2006, 24, 2094–2099. [Google Scholar] [CrossRef]
- Louro, C.; Cavaleiro, A.; Montemor, F. How is the chemical bonding of W–Si–N sputtered coatings? Surf. Coat. Technol. 2001, 142–144, 964–970. [Google Scholar] [CrossRef]
- Liu, Y.H.; Chang, L.C.; Liu, B.W.; Chen, Y.I. Mechanical properties and oxidation behavior of W–Si–N coatings. Surf. Coat. Technol. 2019, 375, 727–738. [Google Scholar] [CrossRef]
- Shen, L.; Wang, N. Effect of nitrogen pressure on the structure of Cr-N, Ta-N, Mo-N, and W-N nanocrystals synthesized by arc discharge. J. Nanomater. 2011, 2011, 781935. [Google Scholar] [CrossRef]
- Greczynski, G.; Primetzhofer, D.; Lu, J.; Hultman, L. Core-level spectra and binding energies of transition metal nitrides by non-destructive X-ray photoelectron spectroscopy through capping layers. Appl. Surf. Sci. 2017, 396, 347–358. [Google Scholar] [CrossRef] [Green Version]
- Naik, S.N.; Walley, S.M. The Hall–Petch and inverse Hall–Petch relations and the hardness of nanocrystalline metals. J. Mater. Sci. 2020, 55, 2661–2681. [Google Scholar] [CrossRef] [Green Version]
- Quek, S.S.; Chooi, Z.H.; Wu, Z.; Zhang, Y.W.; Srolovitz, D.J. The inverse hall–petch relation in nanocrystalline metals: A discrete dislocation dynamics analysis. J. Mech. Phys. Solids 2016, 88, 252–266. [Google Scholar] [CrossRef]
- Mayrhofer, P.H.; Tischler, G.; Mitterer, C. Microstructure and mechanical/thermal properties of Cr–N coatings deposited by reactive unbalanced magnetron sputtering. Surf. Coat. Technol. 2001, 142–144, 78–84. [Google Scholar] [CrossRef]
- Escobar, D.; Ospina, R.; Gómez, A.G.; Restrepo-Parra, E. Microstructure, residual stress and hardness study of nanocrystalline titanium–zirconium nitride thin films. Ceram. Int. 2015, 41, 947–952. [Google Scholar] [CrossRef]
- Tan, P.; Fu, L.; Teng, J.; Zhu, J.; Yang, W.; Li, D.; Zhou, L. Effect of texture on wear resistance of tantalum nitride film. Tribo. Int. 2019, 133, 126–135. [Google Scholar] [CrossRef]
- Addonizio, M.L.; Castaldo, A.; Antonaia, A.; Gambale, E.; Iemmo, L. Influence of process parameters on properties of reactively sputtered tungsten nitride thin films. J. Vac. Sci. Technol. A 2012, 30, 031506. [Google Scholar] [CrossRef]
- Chang, L.C.; Sung, M.C.; Chu, L.H.; Chen, Y.I. Effects of the nitrogen flow ratio and substrate bias on the mechanical properties of W–N and W–Si–N Films. Coatings 2020, 10, 1252. [Google Scholar] [CrossRef]
- Pogrebnjak, A.D.; Beresnev, V.M.; Bondar, O.V.; Postolnyi, B.O.; Zaleski, K.; Coy, E.; Jurga, S.; Lisovenko, M.O.; Konarski, P.; Rebouta, L.; et al. Superhard CrN/MoN coatings with multilayer architecture. Mater. Des. 2018, 153, 47–59. [Google Scholar] [CrossRef]
- Musil, J. Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness. Surf. Coat. Technol. 2012, 207, 50–65. [Google Scholar] [CrossRef]
- Tsui, T.Y.; Pharr, G.M.; Oliver, W.C.; Bhatia, C.S.; White, R.L.; Anders, S.; Anders, A.; Brown, I.G. Nanoindentation and nanoscratching of hard carbon coatings for magnetic disks. Mater. Res. Soc. Symp. Proc. 1995, 383, 447–452. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Du, Y.; Chung, Y.W. Commentary on using H/E and H3/E2 as proxies for fracture toughness of hard coatings. Thin Solid Films 2019, 688, 137265. [Google Scholar] [CrossRef]
- Kim, D.J.; La, J.H.; Kim, K.S.; Kim, S.M.; Lee, S.Y. Tribological properties of CrZr–Si–N films synthesized using Cr–Zr–Si segment targets. Surf. Coat. Technol. 2014, 259, 71–76. [Google Scholar] [CrossRef]
Sample | Power (W) | Chemical Composition (at.%) | N/M1 | T2 | I3 | R4 | ||||
---|---|---|---|---|---|---|---|---|---|---|
PTa | PW | Ta | W | N | O | (nm) | (nm) | (nm/min) | ||
Ta54N46 | 250 | 0 | 52.9 ± 0.7 | - | 44.8 ± 1.1 | 2.3 ± 0.7 | 0.85 | 894 | 170 | 8.9 |
Ta40W15N45 | 250 | 50 | 39.3 ± 3.7 | 14.9 ± 0.9 | 45.1 ± 3.2 | 0.7 ± 1.2 | 0.83 | 813 | 152 | 12.5 |
Ta36W24N40 | 200 | 100 | 35.7 ± 0.4 | 23.2 ± 0.8 | 39.5 ± 0.6 | 1.6 ± 0.0 | 0.67 | 986 | 157 | 15.2 |
Ta17W55N28 | 100 | 200 | 16.6 ± 0.0 | 54.4 ± 0.0 | 27.4 ± 0.0 | 1.6 ± 0.0 | 0.39 | 939 | 157 | 14.4 |
Ta8W68N24 | 50 | 250 | 7.5 ± 0.0 | 67.0 ± 0.0 | 24.0 ± 0.0 | 1.5 ± 0.0 | 0.32 | 885 | 132 | 13.6 |
W94N6 | 0 | 250 | - | 87.9 ± 0.6 | 5.8 ± 0.3 | 6.3 ± 0.4 | 0.06 | 1203 | 130 | 12.0 |
Sample | Ta 4f7/2 (eV) | ITa2N:ITaN 1 | W 4f7/2 (eV) | IW–W:IW–N 2 | N 1s (eV) | IN–Ta:IN–W 3 | |||
---|---|---|---|---|---|---|---|---|---|
(Ta–N)Ta2N | (Ta–N)TaN | W–W | W–N | N–Ta | N–W | ||||
Ta54N46 | 22.60 ± 0.01 | 23.32 ± 0.01 | 33:67 | - | - | - | 397.44 ± 0.01 | - | 100:0 |
Ta40W15N45 | 22.75 ± 0.01 | 23.22 ± 0.02 | 28:72 | 31.29 ± 0.02 | 33.05 ± 0.06 | 68:32 | 397.31 ± 0.04 | 397.85 ± 0.05 | 80:20 |
Ta36W24N40 | 22.66 ± 0.01 | 23.07 ± 0.02 | 32:68 | 31.17 ± 0.02 | 32.76 ± 0.13 | 73:27 | 397.27 ± 0.04 | 397.83 ± 0.06 | 82:18 |
Ta17W55N28 | 22.52 ± 0.04 | 23.10 ± 0.01 | 24:76 | 31.44 ± 0.00 | 32.27 ± 0.07 | 68:32 | 397.33 ± 0.05 | 397.87 ± 0.02 | 26:74 |
Ta8W68N24 | 22.47 ± 0.04 | 23.07 ± 0.02 | 30:70 | 31.43 ± 0.01 | 32.40 ± 0.13 | 72:28 | 397.41 ± 0.04 | 397.95 ± 0.03 | 26:74 |
W94N6 | - | - | - | 31.43 ± 0.01 | 32.58 ± 0.03 | 82:18 | - | 397.71 ± 0.13 | 0:100 |
Sample | H1 | E2 | H/E | H/E*3 | H3/E2 | We4 | σ5 | Ra6 |
---|---|---|---|---|---|---|---|---|
(GPa) | (GPa) | (%) | (GPa) | (nm) | ||||
Ta54N46 | 21.7 ± 2.5 | 277 ± 22 | 0.078 | 0.069 | 0.133 | 59 | −1.6 ± 0.1 | 2.6 |
Ta40W15N45 | 23.2 ± 1.1 | 302 ± 7 | 0.077 | 0.068 | 0.137 | 60 | −1.7 ± 0.2 | 2.1 |
Ta36W24N40 | 24.5 ± 1.7 | 351 ± 25 | 0.070 | 0.062 | 0.119 | 59 | −1.7 ± 0.0 | 2.7 |
Ta17W55N28 | 29.9 ± 0.8 | 381 ± 12 | 0.078 | 0.071 | 0.184 | 63 | −2.5 ± 0.1 | 1.6 |
Ta8W68N24 | 31.9 ± 1.9 | 391 ± 18 | 0.082 | 0.074 | 0.212 | 61 | −1.7 ± 0.2 | 2.5 |
W94N6 | 23.0 ± 3.4 | 315 ± 31 | 0.073 | 0.067 | 0.123 | 55 | −0.7 ± 0.1 | 4.7 |
Sample | Thickness | Wear Depth | μ1 | Wear Rate | Ra2 | H3/E2 |
---|---|---|---|---|---|---|
(nm) | (nm) | (mm3/Nm) | (nm) | (GPa) | ||
Ta54N46 | 894 | 682 | 0.41 | 1.4 × 10−5 | 3.1 | 0.133 |
Ta40W15N45 | 813 | 1224 | 0.78 | 8.3 × 10−6 | 2.7 | 0.137 |
Ta36W24N40 | 986 | 322 | 0.77 | 7.6 × 10−6 | 2.9 | 0.119 |
Ta17W55N28 | 939 | 251 | 0.74 | 4.9 × 10−6 | 3.1 | 0.184 |
Ta8W68N24 | 885 | 1404 | 0.59 | 2.7 × 10−5 | 4.2 | 0.212 |
W94N6 | 1203 | 200 | 0.40 | 2.6 × 10−6 | 6.4 | 0.123 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, L.-C.; Tzeng, C.-H.; Chen, Y.-I. Effects of W Content on Structural and Mechanical Properties of TaWN Films. Coatings 2022, 12, 700. https://doi.org/10.3390/coatings12050700
Chang L-C, Tzeng C-H, Chen Y-I. Effects of W Content on Structural and Mechanical Properties of TaWN Films. Coatings. 2022; 12(5):700. https://doi.org/10.3390/coatings12050700
Chicago/Turabian StyleChang, Li-Chun, Chin-Han Tzeng, and Yung-I Chen. 2022. "Effects of W Content on Structural and Mechanical Properties of TaWN Films" Coatings 12, no. 5: 700. https://doi.org/10.3390/coatings12050700
APA StyleChang, L. -C., Tzeng, C. -H., & Chen, Y. -I. (2022). Effects of W Content on Structural and Mechanical Properties of TaWN Films. Coatings, 12(5), 700. https://doi.org/10.3390/coatings12050700