Damage Characteristics of Aluminum-Coated Grating Irradiated by Nanosecond Pulsed Laser
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Customization
2.2. Simulation Model
2.2.1. Theoretical Method
2.2.2. Parameter Settings
2.3. Experimental Method
3. Results and Discussion
3.1. Damage Morphologies
3.1.1. Damage Morphology by Different Laser Fluences
3.1.2. Typical Damage Morphologies
3.1.3. Damage Morphology of Preferential Damage of Grid Ridge
3.2. Comparison of LIDT
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, C. Chirped pulse amplification: Review and prospective from diffractive optics. Chin. Opt. Lett. 2020, 18, 110502. [Google Scholar] [CrossRef]
- Strickland, D. Nobel Lecture: Generating high-intensity ultrashort optical pulses. Rev. Mod. Phys. 2019, 91, 030502. [Google Scholar] [CrossRef]
- Amen, N.V. Extreme light infrastructure–nuclear physics (ELI-NP) European Research Centre. EPJ Web Conf. 2014, 66, 11043. [Google Scholar]
- Lozhkarev, V.V.; Freidman, G.I.; Ginzburg, V.N.; Katin, E.V.; Khazanov, E.A.; Kirsanov, A.V.; Luchinin, G.A.; Mal’shakov, A.N.; Martyanov, M.A.; Palashov, O.V.; et al. 200 TW 45 fs laser based on optical parametric chirped pulse amplification. Opt. Express 2006, 14, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Fu, S.; Kong, W.; Wang, G.; Xing, F.; Zhang, F.; Zhang, H. Review of pulse compression gratings for chirped pulse amplification system. Opt. Eng. 2021, 60, 020902. [Google Scholar] [CrossRef]
- Glebov, L.B.; Smirnov, V.I.; Stickley, C.M.; Ciapurin, I.V. New approached to robust optics for HEL systems. In Laser Weapons Technology III; International Society for Optics and Photonics: Orlando, FL, USA, 2002; Volume 4724. [Google Scholar]
- Mazzi, A.; Miotello, A. Simulation of phase explosion in the nanosecond laser ablation of aluminum. J. Colloid Interface Sci. 2017, 489, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Gragossian, A.; Tavassoli, S.H.; Shokri, B. Laser ablation of aluminum from normal evaporation to phase explosion. J. Appl. Phys. 2009, 105, 103304. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, N.; Befekadu, G.; Pasiliao, C.L. Modeling pulsed laser ablation of aluminum with finite element analysis considering material moving front. Int. J. Heat Mass. Transf. 2017, 113, 1246–1253. [Google Scholar] [CrossRef]
- Wang, Y.; Hahn, D.W. A simple finite element model to study the effect of plasma plume expansion on the nanosecond pulsed laser ablation of aluminum. Appl. Phys. A Mater. Sci. Processing 2019, 125, 1–15. [Google Scholar] [CrossRef]
- Nammi, S.; Vasa, N.J.; Gurusamy, B.; Mathur, A.C. Single laser based pump-probe technique to study plasma shielding during nanosecond laser ablation of copper thin films. J. Phys. D Appl. Phys. 2017, 50, 355204. [Google Scholar] [CrossRef]
- Inogamov, N.; Khokhlov, V.; Petrov, Y.; Anisimov, S.; Zhakhovsky, V.V.; Demaske, B.J.; Oleynik, I.I.; Ashitkov, S.I.; Khishchenko, K.V.; Agranat, M.; et al. Ultrashort elastic and plastic shockwaves in aluminum. AIP Conf. Proc. 2012, 1426, 909. [Google Scholar]
- Huang, L.; Yang, Y.; Wang, Y.; Zheng, Z.; Su, W. Measurement of transit time for femtosecond-laser-driven shock wave through aluminum films by ultrafast microscopy. J. Phys. D Appl. Phys. 2009, 42, 045502. [Google Scholar] [CrossRef]
- Ho, J.R.; Grigoropoulos, C.P.; Humphrey, J.A.C. Computational study of heat transfer and gas dynamics in the pulsed laser evaporation of metals. J. Appl. Phys. 1995, 78, 4696–4709. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, X.; Shao, J.; Zheng, C.; Chen, A.; Zhang, L. The Damage Threshold of Multilayer Film Induced by Femtosecond and Picosecond Laser Pulses. Coatings 2022, 12, 251. [Google Scholar] [CrossRef]
- Zhang, L.; Jia, X.; Wang, Y.; Zhang, Y.; Chen, A.; Shao, J.; Zheng, C. Effect of Femtosecond Laser Polarization on the Damage Threshold of Ta2O5/SiO2 Film. Appl. Sci. 2022, 12, 1494. [Google Scholar] [CrossRef]
- Rasedujjaman, M.; Gallais, L. Polarization dependent laser damage growth of optical coatings at sub-picosecond regime. Opt. Express 2018, 26, 24444–24460. [Google Scholar] [CrossRef]
- Wang, H.; Song, Y.; Yang, Y.; Xian, Y.; You, Y.; Liu, M.; Yuan, Z.; Wei, T.; He, B.; Zhou, J. Simulation and experimental study of laser-induced thermal deformation of spectral beam combination grating. Opt. Express 2020, 28, 33334–33345. [Google Scholar] [CrossRef]
- Kim, I.; So, S.; Mun, J.; Lee, K.H.; Lee, J.H.; Lee, T.; Rho, J. Optical characterizations and thermal analyses of HfO2/SiO2 multilayered diffraction gratings for high-power continuous wave laser. J. Phys. Photon. 2020, 2, 025004. [Google Scholar] [CrossRef]
- Xu, J.; Chen, J.; Chen, P.; Wang, Y.; Zhang, Y.; Kong, F.; Cao, H.; Jin, Y.; Shao, J. Continuous-wave laser damage mechanism of a spectral combining grating. Appl. Opt. 2019, 58, 2551–2555. [Google Scholar] [CrossRef]
- Li, Z.; Xia, Z. The damage mechanism and process of metal multi-layer dielectric gratings induced by ps-pulsed laser. Appl. Surf. Sci. 2019, 494, 977–982. [Google Scholar] [CrossRef]
- Kumar, S.; Shankar, A.; Kishore, N.; Mukherjee, C. Laser Induced Damage Threshold of Ta2O5 and Ta2O5/SiO2 Films at 532 and 1064 nm. Optik 2019, 176, 438–447. [Google Scholar] [CrossRef]
- Stehlík, M.; Wagner, F.; Zideluns, J.; Lemarchand, F.; Lumeau, J.; Gallais, L. Beam-size effects on the measurement of sub-picosecond intrinsic laser induced damage threshold of dielectric oxide coatings. Appl. Opt. 2021, 60, 8569–8578. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Jin, Y.; Kong, F.; Wang, Y.; Zhang, Y.; Cao, H.; Cui, Y.; Shao, J. High-repetition-rate and multi-pulse ultrashort laser damage of gold-coated photoresist grating. Appl. Surf. Sci. 2022, 576, 151819. [Google Scholar] [CrossRef]
- Xie, L.; Zhang, J.; Zhang, Z.; Ma, B.; Li, T.; Wang, Z.; Cheng, X. Rectangular multilayer dielectric gratings with broadband high diffraction efficiency and enhanced laser damage resistance. Opt. Express 2021, 29, 2669–2678. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Han, J.; Li, J.; Wang, K.; Guan, S.; Niu, X.; Li, H.; Zhang, J.; Jiao, H.; Cheng, X.; et al. Damage characteristics of dual-band high reflectors affected by nodule defects in the femtosecond regime. Chin. Opt. Lett. 2021, 19, 081403. [Google Scholar] [CrossRef]
- Kafka KR, P.; Hoffman, B.N.; Huang, H.; Demos, S.G. Mechanisms of picosecond laser-induced damage from interaction with model contamination particles on a high reflector. Opt. Eng. 2020, 60, 031009. [Google Scholar] [CrossRef]
- ISO 21254-2: 2011; Lasers and Laser-Related Equipment—Test Methods for Laser-Induced Damage Threshold—Part 2: Threshold Determination. International Organization for Standardization (ISO): Geneva, Switzerland, 2011.
- Zheng, B.; Jiang, G.; Wang, W.; Mei, X.; Wang, F. Surface ablation and threshold determination of AlCu4SiMg aluminum alloy in picosecond pulsed laser micromachining. Opt. Laser Technol. 2017, 94, 267–278. [Google Scholar] [CrossRef]
- Lin, X.; Zhao, Y.; Liu, X.; Li, D.; Shuai, K.; Ma, H.; Shao, Y.; Sun, J.; Qiu, K.; Cui, Y.; et al. Damage characteristics of pulse compression grating irradiated by a nanosecond laser. Opt. Mater. Express 2022, 12, 643–652. [Google Scholar] [CrossRef]
Parameter | Symbol | Expression or Value |
---|---|---|
Pulse of width | τp, ns | 6.5 |
Radius of spot | R0, μm | 300 |
Single pulse energy | E, mJ | 1.78–5.85 |
Boiling point | Tb, K | 2793 |
Melting point | Tm, K | 933 |
Gas phase density | ρv, kg/m3 | 30 |
Liquid phase density | ρl, kg/m3 | 2385 |
Solid phase density | ρs, kg/m3 | 2700 |
Thermal conductivity of the solid phase | ks, W/(m·K) | 238 |
Thermal conductivity of the liquid phase | kl, W/(m·K) | 100 |
Specific heat of the solid phase | Cps, J/(kg·K) | 917 |
Specific heat of the liquid phase | Cpl, J/(kg·K) | 1080 |
Dynamic viscosity of the liquid phase | μl, kg/(m·s) | 0.05 |
Dynamic viscosity of the solid phase | μs, kg/(m·s) | μl × 105 |
Latent heat of fusion | Lf, J/kg | 3.896 × 105 |
Latent heat of evaporation | Lv, J/kg | 9.462 × 106 |
Radiation emissivity | ξ | 0.2 |
Surface tension coefficient | σ, N/m | 0.95 × (1 + 0.03 × (1 − T/Tm))1.67 |
Absorptivity | α | 354.67 × ((−1 + 1.25 × 10−2·T) × 10−8)1/2 |
Dynamic viscosity of the gas phase | μ | 0 |
Gas evaporation coefficient | β | 0.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zhang, K.; Ji, Y.; Yu, J.; Jirigalantu; Zhang, W.; Li, W.; Zheng, C.; Chen, F. Damage Characteristics of Aluminum-Coated Grating Irradiated by Nanosecond Pulsed Laser. Coatings 2022, 12, 701. https://doi.org/10.3390/coatings12050701
Wang J, Zhang K, Ji Y, Yu J, Jirigalantu, Zhang W, Li W, Zheng C, Chen F. Damage Characteristics of Aluminum-Coated Grating Irradiated by Nanosecond Pulsed Laser. Coatings. 2022; 12(5):701. https://doi.org/10.3390/coatings12050701
Chicago/Turabian StyleWang, Jiamin, Kuo Zhang, Yanhui Ji, Jinghua Yu, Jirigalantu, Wei Zhang, Wenhao Li, Changbin Zheng, and Fei Chen. 2022. "Damage Characteristics of Aluminum-Coated Grating Irradiated by Nanosecond Pulsed Laser" Coatings 12, no. 5: 701. https://doi.org/10.3390/coatings12050701
APA StyleWang, J., Zhang, K., Ji, Y., Yu, J., Jirigalantu, Zhang, W., Li, W., Zheng, C., & Chen, F. (2022). Damage Characteristics of Aluminum-Coated Grating Irradiated by Nanosecond Pulsed Laser. Coatings, 12(5), 701. https://doi.org/10.3390/coatings12050701