Friction Response of Piston Rings for Application-like Starvation and Benefit of Amorphous Carbon Coatings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Specimens
2.2. Test Bench Setup with Adjustable Oil Supply
2.3. Governing Equations of EHD-Simulation
2.4. Fired Engine Piston Assembly Friction Simulation
2.5. Surface and Contour Characterisation
3. Results and Discussion
3.1. Long-Stroke Tribometer Investigations
3.1.1. Derivation of Test Parameters
3.1.2. Pilot Test on Lubricant Flow Rate
3.1.3. Description of Test Procedure
3.1.4. Influence of Oil Supply on Friction
3.2. Topography and Piston Ring Contour Analysis
3.2.1. Piston Ring Contour and Wear
3.2.2. Topography and Roughness
3.3. Numerical Studies on Basis of the Tribometer Results
3.3.1. Definition of the Oil Supply Parameter
3.3.2. Crank Angle Resolved Results for Fully Flooded and Starved Lubrication Conditions
3.3.3. Hydrodynamic Pressure Evolution in Dependence on the Oil Supply Parameter
3.3.4. Asperity Contact Pressure Evolution in Dependence on the Oil Supply Parameter
3.3.5. Measured Friction Versus Asperity Contact Pressure for Fully Flooded and Starved Lubrication Conditions
- The COFRMS for the three systems differs significantly;
- The systems operate with almost similar asperity contact pressures;
- No crank-angle resolved effects are captioned, despite a slight increase in friction in the reversal zones, as exemplarily shown in Figure 9b at a 0.01 mL/min lubricant flow rate.
- The absolute difference in COFRMS between the tribosystems drops;
- No exceptional crank-angle resolved effects in friction (COF) are captioned, as exemplarily shown in Figure 9b at a 1 mL/min lubricant flow rate;
- Crank-angle resolved effects in asperity contact pressures occur resulting in a wider range from 20.3 to 26.5 bar depending on the velocity (crank angle), as exemplarily shown in Figure 9a for an inlet oil film thickness of 1 µm;
- For the reversal zones asperity contact pressures remain at the same values for starved conditions (on the bottom right in the diagram);
- And for a 285° crank-angle or higher velocities, the COFRMS remains unaffected, while asperity contact pressures drop as far as 17% (for the ta-C-coated piston ring).
3.4. Comparison to Fired Single Cylinder Engine
3.4.1. Validation of Experimental and Simulative Results
3.4.2. Friction Coefficients from Top Ring Variants
4. Conclusions
- Ultra-low friction coefficients (COF < 0.04) were measured for fully flooded lubrication conditions for all evaluated piston rings. At high velocities (900 rpm and a 285° crank angle) the hydrodynamic pressure noticeably reduced contact pressure with a negligible impact on the COF.
- The a-C and the ta-C coating showed beneficial friction and wear properties compared to the nitrided steel piston ring on series-produced cylindrical liners with thermally sprayed iron-based alloy coatings.
- For each piston ring variant, a critical value for the minimum inlet oil film thickness was found. Exceeding this specific value provoked a significant asperity contact pressure increase. Furthermore, this behaviour was strongly linked to the piston ring contour.
- Reducing the oil supply resulted in a significant friction increase for all piston rings, demonstrating the huge impact of oil supply. For starved lubrication conditions, a friction reduction of 24% and 12% was measured for ta-C- and a-C-coated piston rings, respectively.
- The lowest piston ring wear was measured during the deployment of the ta-C-coated piston ring. This coating variant also performed significantly better than the nitrided steel piston ring. Due to the low wear of the DLC coatings compared to the nitrided steel piston ring, no critical wear processes could be noticed. The DLC coating surfaces were in general smoother in a worn condition.
- The hydrodynamic pressure is indirectly linked to abrasion resistance and therefore hardness, due to the conservation of piston ring contour convexity.
- Friction reduction potentials of both carbon coatings, ta-C and a-C, were confirmed.
- No ultra-low friction (COF < 0.04) was measured on the single cylinder engine in contrast to the tribometer. However, COF measured on the tribometer becomes similar to the fired single cylinder engine when starved lubrication conditions are applied.
- In contrast to the tribometer, the a-C-coated piston rings performed slightly better than the ta-C-coated specimen. In addition, both DLC coatings performed better than the nitrided steel piston ring. Therefore, a general preselection of piston rings concerning their frictional behaviour on the long-stroke tribometer is possible and the derivation of tribometer test parameters on the basis of the GHZ works for similar lubrication conditions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kennedy, M.; Hoppe, S.; Esser, J. Kolbenringbeschichtung zur Reibungssenkung im Ottomotor. MTZ-Mot. Z. 2012, 73, 400–403. [Google Scholar] [CrossRef]
- Richardson, D.E. Review of Power Cylinder Friction for Diesel Engines. J. Eng. Gas Turbines Power 2000, 122, 506. [Google Scholar] [CrossRef]
- Holmberg, K.; Andersson, P.; Erdemir, A. Global energy consumption due to friction in passenger cars. Tribol. Int. 2012, 47, 221–234. [Google Scholar] [CrossRef]
- Worton, D.R.; Isaacman, G.; Gentner, D.R.; Dallmann, T.R.; Chan, A.W.H.; Ruehl, C.; Kirchstetter, T.W.; Wilson, K.R.; Harley, R.A.; Goldstein, A.H. Lubricating oil dominates primary organic aerosol emissions from motor vehicles. Environ. Sci. Technol. 2014, 48, 3698–3706. [Google Scholar] [CrossRef]
- Pirjola, L.; Karjalainen, P.; Heikkilä, J.; Saari, S.; Tzamkiozis, T.; Ntziachristos, L.; Kulmala, K.; Keskinen, J.; Rönkkö, T. Effects of fresh lubricant oils on particle emissions emitted by a modern gasoline direct injection passenger car. Environ. Sci. Technol. 2015, 49, 3644–3652. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, R.; Rahnejat, H.; Fitzsimons, B.; Dowson, D. The effect of cylinder liner operating temperature on frictional loss and engine emissions in piston ring conjunction. Appl. Energy 2017, 191, 568–581. [Google Scholar] [CrossRef] [Green Version]
- Esser, J. Oil control rings and their effect on oil consumption. MTZ Worldw. 2002, 63, 22–25. [Google Scholar] [CrossRef]
- Sanda, S.; Murakami, M.; Noda, T.; Konomi, T. Analysis of Lubrication of a Piston Ring Package. (Effect of Oil Starvation on Oil Film Thickness). JSME Int. J. Ser. B Fluids Therm. Eng. 1997, 40, 478–486. [Google Scholar] [CrossRef] [Green Version]
- Obert, P.; Müller, T.; Füßer, H.-J.; Bartel, D. The influence of oil supply and cylinder liner temperature on friction, wear and scuffing behavior of piston ring cylinder liner contacts—A new model test. Tribol. Int. 2016, 94, 306–314. [Google Scholar] [CrossRef]
- Liu, Z.; Liang, F.; Zhai, L.; Meng, X. A comprehensive experimental study on tribological performance of piston ring–cylinder liner pair. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2022, 236, 184–204. [Google Scholar] [CrossRef]
- Courtney-Pratt, J.S.; Tudor, G.K. An Analysis of the Lubrication between the Piston Rings and Cylinder Wall of a Running Engine. Proc. Inst. Mech. Eng. 1946, 155, 293–299. [Google Scholar] [CrossRef]
- Shin, K.; Tateishi, Y.; Furuhama, S. Measurement of Oil-Film-Thickness Between Piston Ring and Cylinder. SAE Trans. 1983, 92, 187–201. [Google Scholar]
- Mohammadpour, M.; Johns-Rahnejat, P.M.; Rahnejat, H.; Gohar, R. Boundary Conditions for Elastohydrodynamics of Circular Point Contacts. Tribol. Lett. 2014, 53, 107–118. [Google Scholar] [CrossRef] [Green Version]
- Shahmohamadi, H.; Mohammadpour, M.; Rahmani, R.; Rahnejat, H.; Garner, C.P.; Howell-Smith, S. On the boundary conditions in multi-phase flow through the piston ring-cylinder liner conjunction. Tribol. Int. 2015, 90, 164–174. [Google Scholar] [CrossRef] [Green Version]
- Bewsher, S.R.; Mohammadpour, M.; Rahnejat, H.; Offner, G.; Knaus, O. An investigation into the oil transport and starvation of piston ring pack. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2019, 233, 112–124. [Google Scholar] [CrossRef]
- Wakuri, Y.; Hamatake, T.; Soejima, M.; Kitahara, T. Piston ring friction in internal combustion engines. Tribol. Int. 1992, 25, 299–308. [Google Scholar] [CrossRef]
- Seki, T. A study on variation in oil film thickness of a piston ring package: Variation of oil film thickness in piston sliding direction. JSAE Rev. 2000, 21, 315–320. [Google Scholar] [CrossRef]
- Morris, N.; Rahmani, R.; Rahnejat, H.; King, P.D.; Fitzsimons, B. The influence of piston ring geometry and topography on friction. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2013, 227, 141–153. [Google Scholar] [CrossRef] [Green Version]
- Obert, P.; Füßer, H.-J.; Bartel, D. Oil distribution and oil film thickness within the piston ring-liner contact measured by laser-induced fluorescence in a reciprocating model test under starved lubrication conditions. Tribol. Int. 2019, 129, 191–201. [Google Scholar] [CrossRef]
- de Barros’Bouchet, M.I.; Martin, J.M.; Le-Mogne, T.; Vacher, B. Boundary lubrication mechanisms of carbon coatings by MoDTC and ZDDP additives. Tribol. Int. 2005, 38, 257–264. [Google Scholar] [CrossRef]
- Zabala, B.; Igartua, A.; Fernández, X.; Priestner, C.; Ofner, H.; Knaus, O.; Abramczuk, M.; Tribotte, P.; Girot, F.; Roman, E.; et al. Friction and wear of a piston ring/cylinder liner at the top dead centre: Experimental study and modelling. Tribol. Int. 2017, 106, 23–33. [Google Scholar] [CrossRef]
- Tung, S.C.; Gao, H. Tribological characteristics and surface interaction between piston ring coatings and a blend of energy-conserving oils and ethanol fuels. Wear 2003, 255, 1276–1285. [Google Scholar] [CrossRef]
- Weihnacht, V.; Makowski, S. The role of lubricant and carbon surface in achieving ultra- and superlow friction. In Superlubricity, 2nd ed.; Erdemir, A., Martin, J.M., Luo, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 247–273. ISBN 9780444643131. [Google Scholar]
- Kuwahara, T.; Romero, P.A.; Makowski, S.; Weihnacht, V.; Moras, G.; Moseler, M. Mechano-chemical decomposition of organic friction modifiers with multiple reactive centres induces superlubricity of ta-C. Nat. Commun. 2019, 10, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makowski, S.; Schaller, F.; Weihnacht, V.; Englberger, G.; Becker, M. Tribochemical induced wear and ultra-low friction of superhard ta-C coatings. Wear 2017, 392–393, 139–151. [Google Scholar] [CrossRef]
- Makowski, S. Superlubricity und Tribochemischer Verschleiß: Wechselwirkung von Tetraedrisch Amorphen Kohlenstoffschichten Mit Fettsäurebasierten Schmierstoffen. Ph.D. Thesis, Technische Universität Dresden, Dresden, Germany, 2019. [Google Scholar]
- Michelberger, B.; Jaitner, D.; Hagel, A.; Striemann, P.; Kröger, B.; Leson, A.; Lasagni, A.F. Combined measurement and simulation of piston ring cylinder liner contacts with a reciprocating long-stroke tribometer. Tribol. Int. 2021, 106, 107146. [Google Scholar] [CrossRef]
- Schleif, B. Reibungsminimierung im System Zylinderlaufbahn/Kolbenringe der Thermisch Gespritzten Laufbahnbeschichtung. Ph.D. Thesis, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany, 2016. [Google Scholar]
- König, J.; Lahres, M.; Methner, O. Quality Designed Twin Wire Arc Spraying of Aluminum Bores. J. Therm. Spray Technol. 2014, 24, 63–74. [Google Scholar] [CrossRef]
- Federal Mogul. Kolbenringhandbuch: [Withdrawn]. Available online: http://korihandbook.tenneco.com/de/index.htm (accessed on 28 April 2021).
- Kaulfuss, F.; Weihnacht, V.; Zawischa, M.; Lorenz, L.; Makowski, S.; Hofmann, F.; Leson, A. Effect of Energy and Temperature on Tetrahedral Amorphous Carbon Coatings Deposited by Filtered Laser-Arc. Materials 2021, 14, 2176. [Google Scholar] [CrossRef]
- Offner, G.; Knaus, O. A Generic Friction Model for Radial Slider Bearing Simulation Considering Elastic and Plastic Deformation. Lubricants 2015, 3, 522–538. [Google Scholar] [CrossRef] [Green Version]
- Offner, G. Friction Power Loss Simulation of Internal Combustion Engines Considering Mixed Lubricated Radial Slider, Axial Slider and Piston to Liner Contacts. Tribol. Trans. 2013, 56, 503–515. [Google Scholar] [CrossRef]
- Offner, G.; Herbst, H.; Mahmoud, K.; Baier, W. Analysis of the Lubricant Flow in a Main Bearing Shell. In Proceedings of the 3rd European Conference on Tribology (ECOTRIB 2011), Vienna, Austria, 7–9 June 2011. [Google Scholar]
- Herbst, H. Theoretical Modeling of the Cylinder Lubrication in Internal Combustion Engines and Its Influence on Piston Slap Induced Noise, Friction and Wear. Postdoctoral Thesis, TU Graz, Graz, Austria, 2008. [Google Scholar]
- Leighton, M.; Rahmani, R.; Rahnejat, H. Surface-specific flow factors for prediction of friction of cross-hatched surfaces. Surf. Topogr. Metrol. Prop. 2016, 4, 25002. [Google Scholar] [CrossRef] [Green Version]
- Patir, N.; Cheng, H.S. Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces. J. Lubr. Technol. 1979, 101, 220–229. [Google Scholar] [CrossRef]
- Jakobsson, B.; Floberg, L. The finite Journal Bearing, considering vaporization: Das Gleitlager von endlicher Breite mit Verdampfung. In Transactions of Chalmers University of Technology; Gumperts Förlag: Gothenburg, Sweden, 1957. [Google Scholar]
- Olsson, K.O. Cavitation in dynamically loaded bearings. In Chalmers Tekniska Hogskola—Handlingar (Chalmers University Technology—Transactions); n 308; Chalmers University of Technology, Institute of Machine Elements: Gothenburg, Sweden, 1965. [Google Scholar]
- Götze, A.; Jaitner, D. Combined experimental and simulative approach for friction loss optimization of DLC coated piston rings. Automot. Engine Technol. (AAET) 2022. submitted. [Google Scholar]
- AVL List GmbH. AVL EXCITE Power Unit Theory: Version 2020; AVL List GmbH: Graz, Austria, 2020. [Google Scholar]
- Point Electronic GmbH. Basic BSE-Detektor—Point Electronic: Zuverlässiger, Konfigurierbarer und Preiswerter 4-Quadranten Rückstreudetektor (4Q-BSE). Available online: https://www.pointelectronic.de/produkte/zubehoer-optionen/basic-rueckstreudetektor/ (accessed on 25 October 2021).
- Paluszyński, J.; Slówko, W. Measurements of the surface microroughness with the scanning electron microscope. J. Microsc. 2009, 233, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Drzazga, W.; Paluszynski, J.; Slowko, W. Three-dimensional characterization of microstructures in a SEM. Meas. Sci. Technol. 2006, 17, 28–31. [Google Scholar] [CrossRef]
- Kaczmarek, D. Investigation of surface topography using a multidetector system in a SEM. Vacuum 2001, 62, 303–308. [Google Scholar] [CrossRef]
- Hersey, M.D. The laws of lubrication of horizontal journal bearings. J. Wash. Acad. Sci. 1914, 19, 542–552. [Google Scholar]
- Gümbel, L. Das Problem der Lagerreibung. Mbl. Berlin. Bez. Ver. Dtsch. Ing. 1914, 5, 87–104, 109–120. [Google Scholar]
- Hübner, M.; Götze, A. Niedrig viskose Öle—Eine Herausforderung für die Auslegung der Zylinderlaufbahn. In Der Verbrennungsmotor—Ein Antrieb mit Vergangenheit und Zukunft: Beiträge zu Methoden, Verfahren und technischen Lösungen: Festschrift für Professor Hans Zellbeck; Roß, T., Heine, A., Eds.; Springer Vieweg: Wiesbaden, Germany, 2018; pp. 553–570. ISBN 9783658192907. [Google Scholar]
- Furuhama, S.; Sasaki, S. New Device for the Measurement of Piston Frictional Forces in Small Engines. SAE Tech. Pap. Ser. 1983, 92, 781–792. [Google Scholar]
- Edtmayer, J.; Hick, H.; Walch, S.; Jech, M.; Wopelka, T.; Losch, S. Kombinierte Tribosystemanalyse des Kontaktes Kolbengruppe Zylinderlaufbahn auf Basis Floating Liner. Tribol. Und Schmier. 2018, 65, 15–21. [Google Scholar]
- Gore, M.; Rahmani, R.; Rahnejat, H.; King, P.D. Assessment of friction from compression ring conjunction of a high-performance internal combustion engine: A combined numerical and experimental study. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2016, 230, 2073–2085. [Google Scholar] [CrossRef] [Green Version]
- Biberger, J.; Füßer, H.-J. Development of a test method for a realistic, single parameter-dependent analysis of piston ring versus cylinder liner contacts with a rotational tribometer. Tribol. Int. 2017, 113, 111–124. [Google Scholar] [CrossRef]
- Archard, J.F.; Hirst, W. The wear of metals under unlubricated conditions. Proc. R. Soc. Lond. A 1956, 236, 397–410. [Google Scholar] [CrossRef]
- Yousfi, M.; Ţălu, Ş. The impact of helical slide honing on surface microtexture compared to plateau honing process through relevant characterization methods. Microsc. Res. Tech. 2022. Erly view. [Google Scholar] [CrossRef]
- de Barros Bouchet, M.I.; Martin, J.M.; Le Mogne, T.; Bilas, P.; Vacher, B.; Yamada, Y. Mechanisms of MoS2 formation by MoDTC in presence of ZnDTP: Effect of oxidative degradation. Wear 2005, 258, 1643–1650. [Google Scholar] [CrossRef]
- Thornley, A.; Wang, Y.; Wang, C.; Chen, J.; Huang, H.; Liu, H.; Neville, A.; Morina, A. Optimizing the Mo concentration in low viscosity fully formulated oils. Tribol. Int. 2022, 168, 107437. [Google Scholar] [CrossRef]
- Stachowiak, G.W.; Batchelor, A.W. Engineering Tribology, 4th ed.; Butterworth-Heinemann: Amsterdam, The Netherlands, 2016; ISBN 9780128100318. [Google Scholar]
- Okubo, H.; Tadokoro, C.; Sumi, T.; Tanaka, N.; Sasaki, S. Wear acceleration mechanism of diamond-like carbon (DLC) films lubricated with MoDTC solution: Roles of tribofilm formation and structural transformation in wear acceleration of DLC films lubricated with MoDTC solution. Tribol. Int. 2019, 133, 271–287. [Google Scholar] [CrossRef]
- Xiuyi, L.; Jiao, B.; Wang, Y.; Azam, A.; Lu, X.; Zou, D.; Ma, X.; Neville, A. An improved contact model considered the effect of boundary lubrication regime on piston ring-liner contact for the two-stroke marine engines from the perspective of the Stribeck curve. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2022, 236, 2602–2616. [Google Scholar] [CrossRef]
- Lafon-Placette, S.; Fontaine, J.; de Barros Bouchet, M.-I.; Heau, C. Critical role of a metallic counterpart on the tribochemical wear of ta-C coatings in base oil. Wear 2018, 402–403, 91–99. [Google Scholar] [CrossRef]
- Salinas Ruiz, V.R.; Kuwahara, T.; Galipaud, J.; Masenelli-Varlot, K.; Hassine, M.B.; Héau, C.; Stoll, M.; Mayrhofer, L.; Moras, G.; Martin, J.M.; et al. Interplay of mechanics and chemistry governs wear of diamond-like carbon coatings interacting with ZDDP-additivated lubricants. Nat. Commun. 2021, 12, 4550. [Google Scholar] [CrossRef]
Specimen | Nitrided Steel (Reference) | ta-C Coating (“Hard DLC”) | a-C Coating (“Soft DLC”) |
---|---|---|---|
Substrate | “GOE66”, 1.4112/X90CrMoV18 | “GOE66”, 1.4112/X90CrMoV18 | “GOE66”, 1.4112/X90CrMoV18 |
Surface treatment | Nitration, “GOE 250” | Laser-arc PVD | Laser-arc PVD |
Coating type | - | ta-C (~63% sp3) | a-C (~31% sp3) |
(Coating) thickness | ~60 µm | 10 µm | 10 µm |
Young’s modulus | 230 GPa | 500 GPa | 300 GPa |
Surface hardness | ~700 HV (7 GPa) | 5000 HV (50 GPa) | 3000 HV (30 GPa) |
Piston Rings | Nitrided Steel (Reference) | ta-C Coating | a-C Coating |
---|---|---|---|
Root mean square roughness (Sq,PR) | 0.095 µm | 0.036 µm | 0.041 µm |
Core Roughness (Sk) | 0.159 µm | 0.076 µm | 0.075 µm |
Reduced peak height (Spk) | 0.183 µm | 0.028 µm | 0.032 µm |
Reduced valley depth (Svk) | 0.119 µm | 0.055 µm | 0.068 µm |
Approximated wear volume | 1.16 × 10−2 mm3 | 2.24 × 10−3 mm3 | 2.58 × 10−3 mm3 |
Wear coefficient according to [53] | 3.9 × 10−5 mm3/Nm | 7.6 × 10−6 mm3/Nm | 8.7 × 10−6 mm3/Nm |
Mean wear rate (height direction) | 166 nm/h | 24 nm/h | 71 nm/h |
Cylinder liner | LDS coated cylinder liner | ||
Root mean square roughness (Sq,CL) | 0.597 µm | 0.643 µm | 0.495 µm |
Core Roughness (Sk) | 0.613 µm | 0.662 µm | 0.595 µm |
Reduced peak height (Spk) | 0.411 µm | 0.195 µm | 0.228 µm |
Reduced valley depth (Svk) | 1.742 µm | 1.819 µm | 1.208 µm |
Combined roughness (Sq) | 0.605 µm | 0.644 µm | 0.496 µm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michelberger, B.; Jaitner, D.; Hagel, A.; Striemann, P.; Kröger, B.; Wetzel, F.-J.; Leson, A.; Lasagni, A.F. Friction Response of Piston Rings for Application-like Starvation and Benefit of Amorphous Carbon Coatings. Coatings 2022, 12, 738. https://doi.org/10.3390/coatings12060738
Michelberger B, Jaitner D, Hagel A, Striemann P, Kröger B, Wetzel F-J, Leson A, Lasagni AF. Friction Response of Piston Rings for Application-like Starvation and Benefit of Amorphous Carbon Coatings. Coatings. 2022; 12(6):738. https://doi.org/10.3390/coatings12060738
Chicago/Turabian StyleMichelberger, Björn, Dirk Jaitner, Andreas Hagel, Patrick Striemann, Benjamin Kröger, Franz-Josef Wetzel, Andreas Leson, and Andrés Fabián Lasagni. 2022. "Friction Response of Piston Rings for Application-like Starvation and Benefit of Amorphous Carbon Coatings" Coatings 12, no. 6: 738. https://doi.org/10.3390/coatings12060738
APA StyleMichelberger, B., Jaitner, D., Hagel, A., Striemann, P., Kröger, B., Wetzel, F. -J., Leson, A., & Lasagni, A. F. (2022). Friction Response of Piston Rings for Application-like Starvation and Benefit of Amorphous Carbon Coatings. Coatings, 12(6), 738. https://doi.org/10.3390/coatings12060738