Entropy Optimization on Axisymmetric Darcy–Forchheimer Powell–Eyring Nanofluid over a Horizontally Stretching Cylinder with Viscous Dissipation Effect
Abstract
:1. Introduction
2. Mathematical Formulation
Skin Friction and Nusselt Number
3. Entropy Optimization and Bejan Number
4. Numerical Method
5. Results and Discussions
6. Conclusions
- It is indicated that with growing value of fluid parameter , velocity increased, while with rising values of porosity parameter , the volume fraction , curvature parameter , and inertia coefficient velocity profile declined.
- The temperature declined with the mounting value of fluid parameter , whereas it increased with increasing values of the porosity parameter , volume fraction , curvature parameter , temperature ratio , thermal radiation , Eckert number , thermophoresis parameter , and Brownian motion . It is noted that the temperature of the fluid rose up and then dropped down when we increased the Prandtl number.
- The concentration profile declined with rising values of fluid parameter , curvature parameter , the Schmidt number , and volume fraction .
- Entropy optimization rose up for the values of volume fraction , curvature parameter , and Brinkman number , whereas for the rising value of porosity parameter , entropy optimization first increased and then decreased.
- Bejan number decayed down for greater and Brinkman number, while for a higher value of curvature parameter, Bejan number rose up. It is indicated that if we increased the porosity parameter , Bejan number decayed down first and then rose up.
- It is concluded that skin friction decreased for a large number of volume fraction, fluid parameter, porosity parameter, curvature parameter, and inertia coefficient, whereas Nusselt number decreased for a cumulative number of volume fraction, fluid parameter, porosity parameter, and temperature ratio, whereas it rose for a cumulative number of curvature parameter.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Crane, L.J. Flow past a stretching plate. Z. Angew. Math. Phys. ZAMP 1970, 21, 645–647. [Google Scholar] [CrossRef]
- Nadeem, S.; Ul Haq, R. Effect of thermal radiation for megnetohydrodynamic boundary layer flow of a nanofluid past a stretching sheet with convective boundary conditions. J. Comput. Theor. Nanosci. 2014, 11, 32–40. [Google Scholar] [CrossRef]
- Ahmed, J.; Mahmood, T.; Iqbal, Z.; Shahzad, A.; Ali, R. Axisymmetric flow and heat transfer over an unsteady stretching sheet in power law fluid. J. Mol. Liq. 2016, 221, 386–393. [Google Scholar] [CrossRef]
- Ariel, P.D. Axisymmetric flow of a second grade fluid past a stretching sheet. Int. J. Eng. Sci. 2001, 39, 529–553. [Google Scholar] [CrossRef]
- Hsiao, K.L. Combined electrical MHD heat transfer thermal extrusion system using Maxwell fluid with radiative and viscous dissipation effects. Appl. Therm. Eng. 2017, 112, 1281–1288. [Google Scholar] [CrossRef]
- Powell, R.E.; Eyring, H. Mechanisms for the Relaxation Theory of Viscosity. Nature 1944, 154, 427–428. [Google Scholar] [CrossRef]
- Patel, M.; Timol, M.G. Numerical treatment of Powell-Eyring fluid flow using Method of Satisfaction of Asymptotic Boundary Conditions (MSABC). Appl. Numer. Math. 2009, 59, 2584–2592. [Google Scholar] [CrossRef]
- Hayat, T.; Awais, M.; Asghar, S. Radiative effects in a three-dimensional flow of MHD Eyring-Powell fluid. J. Egypt. Math. Soc. 2013, 21, 379–384. [Google Scholar] [CrossRef] [Green Version]
- Ara, A.; Khan, N.A.; Khan, H.; Sultan, F. Radiation effect on boundary layer flow of an Eyring–Powell fluid over an exponentially shrinking sheet. Ain Shams Eng. J. 2014, 5, 1337–1342. [Google Scholar] [CrossRef] [Green Version]
- Hayat, T.; Farooq, M.; Alsaedi, A.; Iqbal, Z. Melting heat transfer in the stagnation point flow of powell-eyring fluid. J. Thermophys. Heat Transf. 2013, 27, 761–766. [Google Scholar] [CrossRef]
- Rehman, K.U.; Malik, M.Y.; Salahuddin, T.; Naseer, M. Dual stratified mixed convection flow of Eyring-Powell fluid over an inclined stretching cylinder with heat generation/absorption effect. AIP Adv. 2016, 6, 075112. [Google Scholar] [CrossRef] [Green Version]
- Hayat, T.; Hussain, Z.; Farooq, M.; Alsaedi, A. Magnetohydrodynamic flow of powell-eyring fluid by a stretching cylinder with Newtonian heating. Therm. Sci. 2018, 22, 371–382. [Google Scholar] [CrossRef]
- Bejan, A. A Study of Entropy Generation in Fundamental Convective Heat Transfer. J. Heat Transfer 1979, 101, 718–725. [Google Scholar] [CrossRef]
- Butt, A.S.; Munawar, S.; Ali, A.; Mehmood, A. Entropy generation in the Blasius flow under thermal radiation. Phys. Scr. 2012, 85, 035008. [Google Scholar] [CrossRef]
- San, J.Y.; Worek, W.M.; Lavan, Z. Entropy Generation in Convective Heat Transfer and Isothermal Convective Mass Transfer. J. Heat Transfer 1987, 109, 647–652. [Google Scholar] [CrossRef]
- Tamayol, A.; Hooman, K.; Bahrami, M. Thermal Analysis of Flow in a Porous Medium Over a Permeable Stretching Wall. Transp. Porous Med. 2010, 85, 661–676. [Google Scholar] [CrossRef]
- Rashidi, M.M.; Ali, M.; Freidoonimehr, N.; Nazari, F. Parametric analysis and optimization of entropy generation in unsteady MHD flow over a stretching rotating disk using artificial neural network and particle swarm optimization algorithm. Energy 2013, 55, 497–510. [Google Scholar] [CrossRef]
- Shit, G.C.; Haldar, R.; Mandal, S. Entropy generation on MHD flow and convective heat transfer in a porous medium of exponentially stretching surface saturated by nanofluids. Adv. Powder Technol. 2017, 28, 1519–1530. [Google Scholar] [CrossRef]
- Butt, A.S.; Ali, A. Effects of Magnetic Field on Entropy Generation in Flow and Heat Transfer due to a Radially Stretching Surface. Chin. Phys. Lett. 2013, 30, 024701. [Google Scholar] [CrossRef]
- Munawar, S.; Ali, A.; Mehmood, A. Thermal analysis of the flow over an oscillatory stretching cylinder. Phys. Scr. 2012, 86, 065401. [Google Scholar] [CrossRef]
- Khan, M.; Ahmed, J.; Rasheed, Z. Entropy generation analysis for axisymmetric flow of Carreau nanofluid over a radially stretching disk. Appl. Nanosci. 2020, 10, 5291–5303. [Google Scholar] [CrossRef]
- Choi, S.U.S.; Eastman, J.A. Enhancing thermal conductivity of fluids with nanoparticles. In Proceedings of the International Mechanical Engineering Congress and Exhibition, San Francisco, CA, USA, 12–17 November 1995. [Google Scholar]
- Iqbal, K.; Ahmed, J.; Khan, M.; Ahmad, L.; Alghamdi, M. Magnetohydrodynamic thin film deposition of Carreau nanofluid over an unsteady stretching surface. Appl. Phys. A Mater. Sci. Process. 2020, 126, 105. [Google Scholar] [CrossRef]
- Khan, W.A.; Anjum, N.; Waqas, M.; Abbas, S.Z.; Irfan, M.; Muhammad, T. Impact of stratification phenomena on a nonlinear radiative flow of sutterby nanofluid. J. Mater. Res. Technol. 2021, 15, 306–314. [Google Scholar] [CrossRef]
- Ali, F.; Ahmad, Z.; Arif, M.; Khan, I.; Nisar, K.S. A Time Fractional Model of Generalized Couette Flow of Couple Stress Nanofluid with Heat and Mass Transfer: Applications in Engine Oil. IEEE Access 2020, 8, 146944–146966. [Google Scholar] [CrossRef]
- Acharya, N.; Maity, S.; Kundu, P.K. Entropy generation optimization of unsteady radiative hybrid nanofluid flow over a slippery spinning disk. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2022, 09544062211065384. [Google Scholar] [CrossRef]
- Acharya, N.; Mondal, H.; Kundu, P.K. Spectral approach to study the entropy generation of radiative mixed convective couple stress fluid flow over a permeable stretching cylinder. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021, 235, 2692–2704. [Google Scholar] [CrossRef]
- Krishna, M.V.; Chamkha, A.J. Hall and ion slip effects on MHD rotating flow of elastico-viscous fluid through porous medium. Int. Commun. Heat Mass Transf. 2020, 113, 104494. [Google Scholar] [CrossRef]
- Venkata Ramana, K.; Gangadhar, K.; Kannan, T.; Chamkha, A.J. Cattaneo–Christov heat flux theory on transverse MHD Oldroyd-B liquid over nonlinear stretched flow. J. Therm. Anal. Calorim. 2021, 147, 2749–2759. [Google Scholar] [CrossRef]
- Al-Mubaddel, F.S.; Farooq, U.; Al-Khaled, K.; Hussain, S.; Khan, S.U.; Aijaz, M.O.; Rahimi-Gorji, M.; Waqas, H. Double stratified analysis for bioconvection radiative flow of Sisko nanofluid with generalized heat/mass fluxes. Phys. Scr. 2021, 96, 055004. [Google Scholar] [CrossRef]
- Naveen Kumar, R.; Jyothi, A.M.; Alhumade, H.; Gowda, R.J.P.; Alam, M.M.; Ahmad, I.; Gorji, M.R.; Prasannakumara, B.C. Impact of magnetic dipole on thermophoretic particle deposition in the flow of Maxwell fluid over a stretching sheet. J. Mol. Liq. 2021, 334, 116494. [Google Scholar] [CrossRef]
- Lund, L.A.; Wakif, A.; Omar, Z.; Khan, I.; Animasaun, I.L. Dynamics of water conveying copper and alumina nanomaterials when viscous dissipation and thermal radiation are significant: Single-phase model with multiple solutions. Math. Methods Appl. Sci. 2022. [Google Scholar] [CrossRef]
- Song, Y.-Q.; Waqas, H.; Al-Khaled, K.; Farooq, U.; Gouadria, S.; Imran, M.; Khan, S.U.; Khan, M.I.; Qayyum, S.; Shi, Q.-H. Aspects of thermal diffusivity and melting phenomenon in Carreau nanofluid flow confined by nonlinear stretching cylinder with convective Marangoni boundary constraints. Math. Comput. Simul. 2022, 195, 138–150. [Google Scholar] [CrossRef]
- Acharya, N.; Mabood, F.; Badruddin, I.A. Thermal performance of unsteady mixed convective Ag/MgO nanohybrid flow near the stagnation point domain of a spinning sphere. Int. Commun. Heat Mass Transf. 2022, 134, 106019. [Google Scholar] [CrossRef]
- Chamkha, A.J.; Rashad, A.M. Unsteady heat and mass transfer by MHD mixed convection flow from a rotating vertical cone with chemical reaction and Soret and Dufour effects. Can. J. Chem. Eng. 2014, 92, 758–767. [Google Scholar] [CrossRef]
- Seyedi, S.H.; Saray, B.N.; Chamkha, A.J. Heat and mass transfer investigation of MHD Eyring–Powell flow in a stretching channel with chemical reactions. Phys. A Stat. Mech. Its Appl. 2020, 544, 124109. [Google Scholar] [CrossRef]
- Veera Krishna, M.; Ameer Ahamad, N.; Chamkha, A.J. Hall and ion slip effects on unsteady MHD free convective rotating flow through a saturated porous medium over an exponential accelerated plate. Alexandria Eng. J. 2020, 59, 565–577. [Google Scholar] [CrossRef]
- Chakraborty, S.; Ray, S. Performance optimisation of laminar fully developed flow through square ducts with rounded corners. Int. J. Therm. Sci. 2011, 50, 2522–2535. [Google Scholar] [CrossRef]
- Lorenzini, M.; Suzzi, N. The Influence of Geometry on the Thermal Performance of Microchannels in Laminar Flow with Viscous Dissipation. Heat Transf. Eng. 2016, 37, 1096–1104. [Google Scholar] [CrossRef] [Green Version]
- Lorenzini, M.; Daprà, I.; Scarpi, G. Heat transfer for a Giesekus fluid in a rotating concentric annulus. Appl. Therm. Eng. 2017, 122, 118–125. [Google Scholar] [CrossRef]
- Coelho, P.M.; Faria, J.C. On the generalized Brinkman number definition and its importance for Bingham fluids. J. Heat Transfer 2011, 133, 054505. [Google Scholar] [CrossRef]
Symbols | Description | Symbols | Description |
---|---|---|---|
Velocity in direction | Fluid parameter | ||
Base fluid dynamic viscosity | Nanofluid dynamic viscosity | ||
Base fluid kinematic viscosity | Specific heat | ||
Drag factor | Permeability of porous medium | ||
Base fluid thermal conductivity | Nanofluid thermal conductivity | ||
Nanoparticles’ thermal conductivity | Brownian motion | ||
Base fluid density | Nanofluid density | ||
Characteristic length | Heating capacity of base fluid | ||
Heating capacity of nanofluid | Heating capacity of nanoparticles | ||
Temperature | Temperature at free stream | ||
Absorption coefficient | Thermo-coefficient | ||
Concentration | Ambient concentration |
0.1 | - | - | - | - | −2.463269 |
0.2 | - | - | - | - | −2.919301 |
0.3 | - | - | - | - | −3.6675 |
0.1 | 0.1 | - | - | - | −2.002416 |
- | 0.3 | - | - | - | −2.223522 |
- | 0.5 | - | - | - | −2.463269 |
- | - | 0.1 | - | - | −2.272982 |
- | - | 0.3 | - | - | −2.368182 |
- | - | 0.5 | - | - | −2.463269 |
- | - | - | 0.1 | - | −1.893775 |
- | - | - | 0.3 | - | −2.045572 |
- | - | - | 0.5 | - | −2.186751 |
- | - | - | - | 0.1 | −1.948242 |
- | - | - | - | 0.5 | −2.045572 |
- | - | - | - | 0.9 | −2.138431 |
0.1 | - | - | - | - | 0.416374 |
0.2 | - | - | - | - | 0.413638 |
0.3 | - | - | - | - | 0.3887 |
- | 0.1 | - | - | - | 0.449055 |
- | 0.3 | - | - | - | 0.43289 |
- | 0.5 | - | - | - | 0.416374 |
- | - | 0.1 | - | - | 0.441787 |
- | - | - | - | 0.428625 | |
- | - | - | - | 0.416374 | |
- | - | - | 0.1 | - | 0.330731 |
- | - | - | 0.3 | - | 0.357808 |
- | - | - | 0.5 | - | 0.380167 |
- | - | - | - | 0.1 | 0.419923 |
- | - | - | - | 0.3 | 0.418526 |
- | - | - | - | 0.5 | 0.409504 |
- | - | - | - | - | - |
- | - | - | - | - | - |
Present Result | Hayat et al. [12] | |
---|---|---|
0.2 | −0.7749406 | −0.91287 |
0.4 | −0.7282394 | −0.84516 |
0.6 | −0.6891753 | −0.79057 |
0.8 | −0.6558923 | −0.74536 |
1.0 | −0.6270961 | −0.70711 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rooman, M.; Jan, M.A.; Shah, Z.; Vrinceanu, N.; Ferrándiz Bou, S.; Iqbal, S.; Deebani, W. Entropy Optimization on Axisymmetric Darcy–Forchheimer Powell–Eyring Nanofluid over a Horizontally Stretching Cylinder with Viscous Dissipation Effect. Coatings 2022, 12, 749. https://doi.org/10.3390/coatings12060749
Rooman M, Jan MA, Shah Z, Vrinceanu N, Ferrándiz Bou S, Iqbal S, Deebani W. Entropy Optimization on Axisymmetric Darcy–Forchheimer Powell–Eyring Nanofluid over a Horizontally Stretching Cylinder with Viscous Dissipation Effect. Coatings. 2022; 12(6):749. https://doi.org/10.3390/coatings12060749
Chicago/Turabian StyleRooman, Muhammad, Muhammad Asif Jan, Zahir Shah, Narcisa Vrinceanu, Santiago Ferrándiz Bou, Shahid Iqbal, and Wejdan Deebani. 2022. "Entropy Optimization on Axisymmetric Darcy–Forchheimer Powell–Eyring Nanofluid over a Horizontally Stretching Cylinder with Viscous Dissipation Effect" Coatings 12, no. 6: 749. https://doi.org/10.3390/coatings12060749
APA StyleRooman, M., Jan, M. A., Shah, Z., Vrinceanu, N., Ferrándiz Bou, S., Iqbal, S., & Deebani, W. (2022). Entropy Optimization on Axisymmetric Darcy–Forchheimer Powell–Eyring Nanofluid over a Horizontally Stretching Cylinder with Viscous Dissipation Effect. Coatings, 12(6), 749. https://doi.org/10.3390/coatings12060749