Microstructure, Mechanical Properties, and Reinforcement Mechanism of Second-Phase Reinforced TiC-Based Composites: A Review
Abstract
:1. Introduction
2. Application of Titanium Carbide and Its Composites
3. Effects of the Added Phase on Microstructure and Mechanical Properties
3.1. Effect of Modified Elements on TiC Matrix Composites
3.1.1. Effect of Si on TiC-Based Composites
3.1.2. Effect of the C Elements on TiC-Based Composites
3.2. Effect of Nitride on TiC-Based Composites
3.3. Effect of Metals on the TiC-Based Composites
Material Composition | Processing Conditions (°C/min/MPa) | Material Particle Size | Relative Density (%) | Vickers Hardness (GPa) | Fracture Toughness (MPa·m1/2) | Flexural Strength (Mpa) | Modulus of Elasticity (GPa) | References |
---|---|---|---|---|---|---|---|---|
TiC | SPS, 1900/10/40 | TiC (12 μm) | 95.5 | 3128 (HV0.1 kg) | - | 504 | - | [43] |
TiC-h-BN (5 wt.%) | h-BN (2 μm) | 95.4 | 2914 (HV0.1 kg) | - | 429 | - | ||
TiC–graphite (5 wt.%) | Graphite (100 nm) | 97.1 | 2071 (HV0.1 kg) | - | 633 | - | ||
TiC-h-BN (5 wt.%)- graphite (5 wt.%) | - | 93.2 | 2477 (HV0.1 kg) | - | 457 | - | ||
TiC | SPS, 1900/10/40 | TiC (12 μm) | 95.5 | 3128 (HV0.1 kg) | - | 504 | - | [38] |
TiC–C (5 wt.%) | C (30 nm) | 100 | 3233 (HV0.1 kg) | - | 658 | - | ||
TiC | SPS, 1900/10/40 | TiC (12 μm) | 95.5 | 3128 (HV0.1 kg) | - | 504 | - | [40] |
TiC–graphite (5 wt.%) | Graphite (50 nm) | 97.1 | 2071 (HV0.1 kg) | - | 633 | - | ||
TiC | SPS, 1900/10/40 | TiC (10 μm) | 95.5 | 3128 (HV0.1 kg) | - | 504 | 17.7 | [44] |
TiC-ZrN (5 wt.%) | ZrN (2 μm) | 92.8 | 2640 (HV0.1 kg) | - | 444 | 14.9 | ||
TiC | SPS, 1900/10/40 | TiC (12 μm) | 95.5 | 3128 (HV0.1 kg) | - | 504 | - | [48] |
TiC–ZrN (5 wt.%) | ZrN (2 μm) | 92.7 | 2649 (HV0.1 kg) | - | 444 | - | ||
TiC–C (5 wt.%) | C (30 nm) | 100 | 3233 (HV0.1 kg) | - | 658 | - | ||
TiC–ZrN (5 wt.%)–C (5 wt.%) | - | 99.1 | 2938 (HV0.1 kg) | - | 741 | - | ||
TiC | SPS, 1900/7/40 | - | 95.5 | 3128 (HV0.1 kg) | - | 504 | - | [53] |
TiC–Si3N4 (5 wt.%) | - | 90.4 | 2966 (HV0.1 kg) | - | 219 | - | ||
TiC | SPS, 1900/10/40 | TiC (12 μm) | 95.5 | 3128 (HV0.1 kg) | - | 504 | - | [57] |
TiC-TiN (5 wt.%) | TiN (5 μm) | 97.1 | 2745 (HV0.1 kg) | - | 448 | - | ||
TiC | SPS, 1900/10/40 | - | 95.5 | 3128 (HV0.1 kg) | - | 504 | - | [61] |
TiC–AlN (5 wt.%) | - | 101.3 | 3050 (HV0.1 kg) | - | 688 | - | ||
TiC–Al (40 vol.%) | RHP, 1200/15 | - | - | 13.28 | - | - | - | [67] |
TiC–Al (40 vol.%) | RHP, 1000/180 | - | - | 10.22 | - | - | - | |
TiC–Ni (1 wt.%) | HP, 1200/720/ 250 | - | - | 328 (HLD) | - | - | - | [68] |
TiC–Ni (1.5 wt.%) | - | - | 337 (HLD) | - | - | - | ||
TiC–Ni (2 wt.%) | - | - | 377 (HLD) | - | - | - | ||
TiC–Ni (1 wt.%) | MPS, 1200/90/0 | - | - | 165 (HLD) | - | - | - | |
TiC–Ni (1.5 wt.%) | - | - | 236 (HLD) | - | - | - | ||
TiC–Ni (2 wt.%) | - | - | 156 (HLD) | - | - | - | ||
TiC-20 (wt.% Ni) | PS, 1445/60/ 10−3–10−2 | - | - | 13.3 ± 0.3 | 8.28 ± 0.63 | - | - | [69] |
(Ti,W0.05)C-20 (wt.% Ni) | - | - | 14.0 ± 0.2 | 12.45 ± 0.69 | - | - | ||
(Ti,Mo0.1)C-20 (wt.% Ni) | - | - | 13.7 ± 0.2 | 11.74 ± 0.85 | - | - | ||
(Ti,Ta0.05)C-20 (wt.% Ni) | - | - | 14.2 ± 0.2 | 12.02 ± 0.53 | - | - | ||
TiC | SPS, 1900/10/40 | TiC (20 μm) | 95.5 | 3128 (HV0.1 kg) | - | 504 | - | [73] |
TiC–C (5 wt.%) | C (10 nm) | 97.1 | 2872 (HV0.1 kg) | - | 633 | - | ||
TiC | SPS, 1900/10/40 | TiC (2 μm) | 95.5 | 3128 (HV0.1 kg) | - | 504 | - | [74] |
TiC-Si3N4 (5 wt.%) | Si3N4 (12 μm) | 90.4 | 2966 (HV0.1 kg) | - | 219 | - | ||
TiC-CNTs (5 wt.%) | CNTs (L = 50 μm, D = 3–5 μm) | 92.1 | 3016 (HV0.1 kg) | - | 413 | - | ||
TiC-Si3N4 (5 wt.%)-CNTs (5 wt.%) | 98.8 | 3213 (HV0.1 kg) | - | 530 | - | |||
TiC-N | - | - | 11.65 ± 1.04 | - | - | 157.67 ± 8.69 | [75] | |
TiC-N-HA | - | - | 9.24 ± 0.14 | - | - | 131.5 ± 11.04 | ||
TiC | SPS, 1900/10/40 | TiC (12 μm) | - | 3128 (HV0.1 kg) | - | 504 | - | [76] |
TiC-h-BN (5 wt.%) | BN (2 μm) | - | 2914 (HV0.1 kg) | - | 429 | - | ||
TiC-Al (20 vol.%) | HP, 1000/3/7700 | - | - | 11.98 | - | - | - | [77] |
TiC-Al (30 vol.%) | - | - | 10.47 | - | - | - | ||
TiC–Ti3Al (10 wt.%) | HP, 1500/60/50 | - | 97.7 | 16.20 | 3.2 | - | - | [78] |
TiC–Ti3Al (20 wt.%) | - | 95.4 | 9.40 | 4.2 | - | - | ||
TiC–Ti3Al (30 wt.%) | - | 92.3 | 4.8 | 6.1 | - | - | ||
TiC–Ti3Al (40 wt.%) | - | 90.6 | 3.7 | 6.9 | - | - |
4. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cui, K.; Mao, H.; Zhang, Y.; Wang, J.; Fu, T. Microstructure, mechanical properties, and reinforcement mechanism of carbide toughened ZrC-based ultra-high temperature ceramics: A review. Compos. Interfaces 2022, 4, 1–20. [Google Scholar] [CrossRef]
- Cui, K.; Fu, T.; Zhang, Y.; Wang, J.; Mao, H.; Tan, T. Microstructure and Mechanical Properties of CaAl12O19 reinforced Al2O3-Cr2O3 composites. J. Eur. Ceram. Soc. 2021, 41, 7935–7945. [Google Scholar] [CrossRef]
- Fu, T.; Cui, K.; Zhang, Y.; Wang, J.; Shen, F.; Yu, L.; Qie, J.; Zhang, X. Oxidation protection of tungsten alloys for nuclear fusion applications: A comprehensive review. J. Alloy. Compd. 2021, 884, 161057. [Google Scholar] [CrossRef]
- Fu, T.; Shen, F.; Zhang, Y.; Yu, L.; Cui, K.; Wang, J.; Zhang, X. Oxidation protection of high-temperature coatings on the surface of Mo-Based alloys-A Review. Coatings 2022, 12, 141. [Google Scholar] [CrossRef]
- Asl, M.S.; Nayebi, B.; Ahmadi, Z.; Parvizi, S.; Shokouhimehr, M. A novel ZrB2–VB2–ZrC composite fabricated by reactive spark plasma sintering. Mater. Sci. Eng. A 2018, 731, 131–139. [Google Scholar]
- Germi, M.D.; Mahaseni, Z.H.; Ahmadi, Z.; Asl, M.S. Phase evolution during spark plasma sintering of novel Si3N4-doped TiB2–SiC composite. Mater. Charact. 2018, 145, 225–232. [Google Scholar] [CrossRef]
- Asl, M.S.; Delbari, S.A.; Shayesteh, F.; Ahmadi, Z.; Motallebzadeh, A. Reactive spark plasma sintering of TiB2-SiC-TiN novel composite. Int. J. Refract. Met. Hard Mater. 2019, 81, 119–126. [Google Scholar]
- Orooji, Y.; Alizadeh, A.; Ghasali, E.; Derakhshandeh, M.R.; Alizadeh, M.; Asl, M.S.; Ebadzadeh, T. Co-reinforcing of mullite-TiN-CNT composites with ZrB2 and TiB2 compounds. Ceram. Int. 2019, 45, 20844–20854. [Google Scholar] [CrossRef]
- Mao, H.; Shen, F.; Zhang, Y.; Wang, J.; Cui, K.; Wang, H.; Lv, T.; Fu, T.; Tan, T. Microstructure and Mechanical Properties of Carbide Reinforced TiC-Based Ultra-High Temperature Ceramics: A Review. Coatings 2021, 11, 1444. [Google Scholar] [CrossRef]
- Babapoor, A.; Asl, M.S.; Ahmadi, Z.; Namini, A.S. Effects of spark plasma sintering temperature on densification, hardness and thermal conductivity of titanium carbide. Ceram. Int. 2018, 44, 14541–14546. [Google Scholar] [CrossRef]
- Namini, A.S.; Ahmadi, Z.; Babapoor, A.; Shokouhimehr, M.; Asl, M.S. Microstructure and thermomechanical characteristics of spark plasma sintered TiC ceramics doped with nano-sized WC. Ceram. Int. 2019, 45, 2153–2160. [Google Scholar] [CrossRef]
- Asl, M.S.; Ahmadi, Z.; Namini, A.S.; Babapoor, A.; Motallebzadeh, A. Spark plasma sintering of TiC-SiCw ceramics. Ceram. Int. 2019, 45, 19808–19821. [Google Scholar]
- Korzhavyi, P.A.; Pourovskii, L.V.; Hugosson, H.W.; Ruban, A.V.; Johansson, B. Ab InitioStudy of Phase Equilibria in TiCx. Phys. Rev. Lett. 2001, 88, 15505. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Ji, C.; Zhu, M. Effect of cooling rate on the nucleation and growth of large TiC particles in Ti-Mo steel. J. Alloy. Compd. 2020, 823, 153650. [Google Scholar] [CrossRef]
- Pu, D.L.; Pan, Y. First-principles investigation of solution mechanism of C in TM-Si-C matrix as the potential high-temperature ceramics. J. Am. Ceram. Soc. 2022, 105, 2858–2868. [Google Scholar] [CrossRef]
- Dong, B.; Yang, H.; Qiu, F.; Li, Q.; Shu, S.; Zhang, B.; Jiang, Q. Design of TiC nanoparticles and their morphology manipulating mechanisms by stoichiometric ratios: Experiment and first-principle calculation. Mater. Des. 2019, 181, 107951. [Google Scholar] [CrossRef]
- Jin, S.B.; Shen, P.; Lin, Q.L.; Zhan, L.; Jiang, Q.C. Growth Mechanism of TiCx during Self-Propagating High-Temperature Synthesis in an AlTiC System. Cryst. Growth Des. 2010, 10, 1590–1597. [Google Scholar] [CrossRef]
- Zarrinfar, N.; Shipway, P.H.; Kennedy, A.R.; Saidi, A. Carbide stoichiometry in TiCx and Cu-TiCx produced by self-propagating high-temperature synthesis. Scr. Mater. 2002, 46, 121–126. [Google Scholar] [CrossRef]
- Moshfegh, A.; Shams, M.; Ebrahimi, R.; Farnia, M.A. Two-way coupled simulation of a flow laden with metallic particulates in overexpanded TIC nozzle. Int. J. Heat Fluid Flow 2009, 60, 1142–1156. [Google Scholar] [CrossRef]
- Kim, H.S.; Kang, B.R.; Choi, S.M. Fabrication and characteristics of a HfC/TiC multilayer coating by a vacuum plasma spray process to protect C/C composites against oxidation. Corros. Sci. 2020, 178, 109068. [Google Scholar] [CrossRef]
- Xiao, M.; Zhang, Y.; Wu, Y.; Qiu, Z.; Zhou, C.; Zhuo, S.; Liu, M.; Zeng, D. Preparation, mechanical properties and enhanced wear resistance of TiC-Fe composite cermet coating. Int. J. Refract. Met. Hard Mater. 2021, 101, 105672. [Google Scholar] [CrossRef]
- Cheng, L.; Xie, Z.; Liu, G. Spark plasma sintering of TiC ceramic with tungsten carbide as a sintering additive. J. Eur. Ceram. Soc. 2013, 33, 2971–2977. [Google Scholar] [CrossRef]
- Wang, L.; Liu, H.; Huang, C.; Liu, X.; Zou, B.; Zhao, B. Microstructure and mechanical properties of TiC-TiB2 composite cermet tool materials at ambient and elevated temperature. Ceram. Int. 2016, 42, 2717–2723. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, K.; Gao, Q.; Hussain, S.; Lv, Y. Investigation of morphology and texture properties of WSi2 coatings on W substrate based on contact-mode AFM and EBSD. Surf. Coat. Technol. 2020, 396, 125996. [Google Scholar] [CrossRef]
- Ramos, J.P.; Senos, A.M.R.; Stora, T.; Fernandes, C.M.; Bowen, P. Development of a processing route for carbon allotrope-based TiC porous nanocomposites. J. Eur. Ceram. Soc. 2017, 37, 3899–3908. [Google Scholar] [CrossRef]
- Du, Y.; Gao, J.; Lan, X.; Gao, Z. Preparation of TiC ceramics from hot Ti-bearing blast furnace slag: Carbothermal reduction, supergravity separation and spark plasma sintering. J. Eur. Ceram. Soc. 2022, 42, 2055–2061. [Google Scholar] [CrossRef]
- Xue, J.; Liu, J.; Zhang, G.; Zhang, H.; Liu, T.; Zhou, X.; Peng, S. Improvement in mechanical/physical properties of TiC-based ceramics sintered at 1500 °C for inert matrix fuels. Scr. Mater. 2016, 114, 5–8. [Google Scholar] [CrossRef]
- Li, Z.; Lei, Y.; Ma, W.; Zhang, Y.; Wang, C. Preparation of high-purity TiSi2 and eutectic Si-Ti alloy by separation of Si-Ti alloy for clean utilization of Ti-bearing blast furnace slag. Sep. Purif. Technol. 2021, 265, 118473. [Google Scholar] [CrossRef]
- Perevislov, S.N.; Sokolova, T.V.; Stolyarova, V.L. The Ti3SiC2 Maxphases as promising materials for high temperature applications: Formation under various synthesis conditions. Mater. Chem. Phys. 2021, 167, 124625. [Google Scholar] [CrossRef]
- Li, C.; Zhang, F.; He, J.; Yin, F. Preparation and properties of reactive plasma sprayed TiC-Ti5Si3-Ti3SiC2/Al coatings from Ti-Si-C-Al mixed powders. Mater. Chem. Phys. 2021, 269, 124772. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, L.; Fu, T.; Wang, J.; Shen, F.; Cui, K. Microstructure evolution and growth mechanism of Si-MoSi2 composite coatings on TZM (Mo-0.5Ti-0.1Zr-0.02 C) alloy. J. Alloy. Compd. 2022, 894, 162403. [Google Scholar] [CrossRef]
- Zhang, H.; Fang, Y. Temperature dependent photoluminescence of surfactant assisted electrochemically synthesized ZnSe nanostructures. J. Alloy. Compd. 2019, 781, 201–208. [Google Scholar] [CrossRef]
- Tang, C.; Zhao, K.; Tang, Y.; Li, F.; Meng, Q. Synthesis of Ti3SiC2from TiC and Si and its toughening mechanism with incorporated carbon fibers. Ceram. Int. 2021, 47, 26293–26300. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Qiu, H.; Cao, T.; Qu, S. Fabrication of in situ elongated β-Sialon grains bonded to tungsten carbide via two-step spark plasma sintering. Ceram. Int. 2021, 47, 27324–27333. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, T.; Yu, L.; Shen, F.; Wang, J.; Cui, K. Improving oxidation resistance of TZM alloy by deposited Si-MoSi2 composite coating with high silicon concentration. Ceram. Int. 2022, 48, 20895–20904. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, X.; Xu, X.; Yang, G. Study on repairing mechanism of wind quenching slag powder in heavy metal contaminated soil by XRD and SEM. Spectrosc. Spectr. Anal. 2021, 41, 278–284. [Google Scholar]
- Istgaldi, H.; Asl, M.S.; Shahi, P.; Nayebi, B.; Ahmadi, Z. Solid solution formation during spark plasma sintering of ZrB2-TiC-graphite composites. Ceram. Int. 2020, 46, 2923–2930. [Google Scholar] [CrossRef]
- Nguyen, V.; Pazhouhanfar, Y.; Delbari, S.A.; Shaddel, S.; Babapoor, A.; Mohammadpourderakhshi, Y.; Le, Q.V.; Shokouhimehr, M.; Asl, M.S.; Namini, A.S. Beneficial role of carbon black on the properties of TiC ceramics. Ceram. Int. 2020, 45, 23544–23555. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, Q.; Han, X.; Ruan, G.; Liu, X. Mechanism analysis of formaldehyde degradation by hot braised slag modified activated carbon based on XRF and XRD. Spectrosc. Spectr. Anal. 2020, 40, 1447–1451. [Google Scholar]
- Fattahi, M.; Babapoor, A.; Delbari, S.A.; Ahmadi, Z.; Namini, A.S.; Asl, M.S. Strengthening of TiC ceramics sintered by spark plasma via nano-graphite addition. Ceram. Int. 2020, 46, 12400–12408. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, T.; Cui, K.; Shen, F.; Wang, J.; Yu, L.; Mao, H. Evolution of surface morphology, roughness and texture of tungsten disilicide coatings on tungsten substrate. Vacuum 2021, 191, 110297. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, L.; Fu, T.; Wang, J.; Shen, F.; Cui, K.; Wang, H. Microstructure and oxidation resistance of Si-MoSi2 ceramic coating on TZM (Mo-0.5Ti-0.1Zr-0.02C) alloy at 1500 °C. Surf. Coat. Technol. 2022, 431, 128037. [Google Scholar] [CrossRef]
- Nguyen, V.; Delbari, S.A.; Namini, A.S.; Babapoor, A.; Le, Q.V.; Jang, H.W.; Shokouhimehr, M.; Asl, M.S.; Mohammadi, M. Microstructural, mechanical and friction properties of nano-graphite and h-BN added TiC-based composites. Ceram. Int. 2020, 46, 28969–28979. [Google Scholar] [CrossRef]
- Nguyen, T.P.; Pazhouhanfar, Y.; Delbari, S.A.; Namini, A.S.; Babapoor, A.; Mohammadpourderakhshi, Y.; Shaddel, S.; Le, Q.V.; Shokouhimehr, M.; Asl, M.S. Physical, mechanical and microstructural characterization of TiC-ZrN ceramics. Ceram. Int. 2020, 46, 22154–22163. [Google Scholar] [CrossRef]
- Nguyena, T.P.; Germi, M.D.; Mahaseni, Z.H.; Delbari, S.A.; Ahmadi, Q.V.l.; Shokouhimehr, M.; Namini, A.S.; Asl, M.S. Densification enhancement of spark plasma sintered TiB2 ceramics with low content AlN additive. Ceram. Int. 2020, 46, 22127–22133. [Google Scholar] [CrossRef]
- Wang, P.; Dai, M.; Chun, T.; Long, H.; Wei, J. Influence of the Gangue Compositions on the Reduction Swelling Index of Hematite Briquettes. Metall. Mater. Trans. B 2021, 52, 2139–2150. [Google Scholar] [CrossRef]
- Zhang, H.; Fan, W. Spectroscopic analysis of activated carbon mixed with steel slag composite material in sintering flue gas of desulfurization and denitration. Spectrosc. Spectr. Anal. 2020, 40, 1195–1200. [Google Scholar]
- Nguyen, V.; Delbari, S.A.; Asl, M.S.; Le, Q.V.; Jang, H.W.; Shokouhimehr, M.; Mohammadi, M.; Namini, A.S. A novel spark plasma sintered TiC-ZrN-C composite with enhanced flexural strength. Ceram. Int. 2020, 46, 29022–29032. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Z. MicroRNA-16 via Twist1 inhibits EMT induced by PM2.5 exposure in human hepatocellular carcinoma. Open Med. 2019, 14, 673–682. [Google Scholar] [CrossRef]
- Lin, X.; Chen, H.; Wu, J.; Wu, Z.; Li, R.; Liu, H. TiC-modified CNTs as reinforcing fillers for isotropic graphite produced from mesocarbon microbeads. New Carbon. Mat. 2022, 186, 738. [Google Scholar] [CrossRef]
- Zhang, H.; Li, H.; Long, H.; Liu, Z.; Zhang, Y.; Zheng, W. Spectroscopic analysis of reinforcing-flame retardant mechanism of modified steel slag-mineral powder composite rubber filler. Spectrosc. Spectr. Anal. 2020, 41, 1138–1143. [Google Scholar]
- Zhang, H.; Zhang, L.; Liu, X. Study on preparation stage and mechanism of modified desulfurization ash-based eco rubber by X-ray diffraction. Spectrosc. Spectr. Anal. 2020, 40, 616–621. [Google Scholar]
- Pazhouhanfar, Y.; Delbari, S.A.; Shaddel, S.; Pazhouhanfar, M.; Le, Q.V.; Shokouhimehr, M.; Mohammadi, M.; Namini, A.S. Characterization of spark plasma sintered TiC-Si3N4ceramics. Int. J. Refract. Met. Hard Mater. 2020, 95, 105444. [Google Scholar] [CrossRef]
- Mokhayer, M.M.; Kakroudi, M.G.; Milani, S.S.; Ghiasi, H.; Vafa, N.P. Investigation of AlN addition on the microstructure and mechanical properties of TiB2 ceramics. Ceram. Int. 2019, 45, 16577–16583. [Google Scholar] [CrossRef]
- Shahedifar, V.; Kakroudi, M.G.; Vafa, N.P. Characterization of TaC-based fibrous-monolithic ceramics made of fibers with different core/shell volume ratios and orientations. Mater. Sci. Eng. A 2020, 775, 138935. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; Long, M. Study on composite activating mechanism of alkali steel slag cementations materials by XRD and FTIR. Spectrosc. Spectr. Anal. 2018, 38, 2302–2306. [Google Scholar]
- Pazhouhanfar, Y.; Namini, A.S.; Delbari, S.A.; Nguyen, T.P.; Le, Q.V.; Shaddel, S.; Pazhouhanfar, M.; Shokouhimehr, M.; Asl, M.S. Microstructural and mechanical characterization of spark plasma sintered TiC ceramics with TiN additive. Ceram. Int. 2020, 46, 18924–18932. [Google Scholar] [CrossRef]
- Xian, G.; Xiong, J.; Fan, H.; Jiang, F.; Zhao, H.; Xian, L.; Qin, Z. Mechanical and wear properties of TiN films on differently pretreated TiCN-based cermets. Appl. Surf. Sci. 2021, 570, 151180. [Google Scholar] [CrossRef]
- Sakauchi, K.; Nagai, M.; Tabakoya, T.; Nakamura, Y.; Yamasaki, S.; Nebel, C.E.; Zhang, X.; Matsumoto, T.; Inokuma, T.; Tokuda, N. Mechanical damage-free surface planarization of single-crystal diamond based on carbon solid solution into nickel. Diam. Relat. Mater. 2021, 116, 108390. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Y. Study on reinforcement mechanism of composite rubber using modified desulfurization ash replacing partial carbon black by FTIR and XRD. Spectrosc. Spectr. Anal. 2019, 39, 2067–2072. [Google Scholar]
- Fattahi, M.; Pazhouhanfar, Y.; Delbari, S.A.; Shaddel, S.; Namini, A.S.; Asl, M.S. Strengthening of novel TiC-AlN ceramic with in-situ synthesized Ti3Al intermetallic compound. Ceram. Int. 2020, 46, 14105–14113. [Google Scholar] [CrossRef]
- Cao, M.; Wang, C.; Deng, K.; Nie, K.; Liang, W.; Wu, Y. Effect of interface on mechanical properties and formability of Ti/Al/Ti laminated composites. J. Mater. Res. Technol. 2021, 14, 1655–1669. [Google Scholar] [CrossRef]
- Song, B.; Yang, W.; Babapoor, A. In-situ formation of TiN during the hot-pressing of TiC-AlN ceramics. Ceram. Int. 2021, 47, 20643–20650. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Yu, L.; Cui, K.; Fu, T.; Mao, H. Effective separation and recovery of valuable metals from waste Ni-based batteries: A comprehensive review. Chem. Eng. J. 2022, 439, 135767. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, J.; Yan, S.; Yu, G.; He, J.; Yin, F. Plasma spraying Ti-Al-C based composite coatings from Ti/Al/graphite agglomerates: Synthesis, characterization and reaction mechanism. Vacuum 2022, 200, 111036. [Google Scholar] [CrossRef]
- An, Q.; Zhou, G.; Cai, A.H.; Li, P.W.; Ding, D.W.; Zhou, G.J.; Yang, Q.; Mao, H. Effect of Ti and Al ratio on glass forming ability and crystallization behavior of Zr-Cu-Al-Ti alloy powders. Thermochim. Acta 2022, 710, 179163. [Google Scholar] [CrossRef]
- Krasnowski, M.; Gierlotka, S.; Kulik, T. Nanocrystalline matrix TiC-Al3Ti and TiC-Al3Ti-Al composites produced by reactive hot-pressing of milled powders. Adv. Powder Technol. 2014, 25, 1082–1086. [Google Scholar] [CrossRef]
- Vasudevan, N.; Ahamed, N.N.N.; Aravindhan, P.B.A.; Shanmugavel, B.P. Effect of Ni addition on the densification of TiC: A comparative study of conventional and microwave sintering. Int. J. Refract. Met. Hard Mater. 2020, 87, 105165. [Google Scholar] [CrossRef]
- Chen, X.; Yao, Z.; Xiong, W.; Xu, J. A novel fabrication technique of toughened TiC-based solid solution cermets using mechanochemical synthesis. J. Mater. Sci. 2020, 55, 12776–12788. [Google Scholar] [CrossRef]
- Fu, Z.; Kong, J.H.; Gajjala, S.R.; Koc, R. Sintering, mechanical, and oxidation properties of TiC-Ni-Mo cermets obtained from ultra-fine TiC powders. J. Alloy. Compd. 2018, 751, 316–323. [Google Scholar] [CrossRef]
- Kim, J.; Kim, Y. Influence of Mo contents on microstructures and mechanical properties of (Ti,W,Mo)(CN)-Ni cermets. Ceram. Int. 2019, 45, 5361–5366. [Google Scholar] [CrossRef]
- Oliveira, C.I.d.S.; Martínez, D.M.; Cunha, L.; Mendez, S.L.; Martins, P.; Alves, E.; Barradas, N.P.; Apreutesei, M. Deposition of Ti-Zr-O-N films by reactive magnetron sputtering of Zr target with Ti ribbons. Surf. Coat. Technol. 2020, 409, 126737. [Google Scholar] [CrossRef]
- Nguyen, T.P.; Pazhouhanfar, Y.; Delbari, S.A.; Le, Q.V.; Shaddel, S.; Namini, A.S.; Shokouhimehr, M.; Asl, M.S. Role of nano-diamond addition on the characteristics of spark plasma sintered TiC ceramics. Diam. Relat. Mater. 2020, 106, 107828. [Google Scholar] [CrossRef]
- Nguyen, V.; Delbari, S.A.; Asl, M.S.; Le, Q.V.; Shokouhimehr, M.; Mohammadi, M. Synergistic effects of Si3N4 and CNT on densification and properties of TiC-based ceramics. Ceram. Int. 2021, 47, 12941–12950. [Google Scholar] [CrossRef]
- Khoyi, L.C.; Allaf, J.K.; Motallebzadeh, A.; Etminanfar, M. The effect of hydroxyapatite nanoparticles on electrochemical and mechanical performance of TiC/N coating fabricated by plasma electrolytic saturation method. Surf. Coat. Technol. 2020, 394, 125817. [Google Scholar] [CrossRef]
- Shaddel, S.; Namini, A.S.; Pazhouhanfar, Y.; Delbari, S.A.; Fattahi, M.; Asl, M.S. A microstructural approach to the chemical reactions during the spark plasma sintering of novel TiC-BN ceramics. Ceram. Int. 2020, 46, 15982–15990. [Google Scholar] [CrossRef]
- Krasnowski, M.; Gierlotka, S.; Kulik, T. TiC-Al composites with nanocrystalline matrix produced by consolidation of milled powders. Adv. Powder Technol. 2014, 25, 1362–1368. [Google Scholar] [CrossRef]
- Fu, Z.; Mondal, K.; Koc, R. Sintering, mechanical, electrical and oxidation properties of ceramic intermetallic TiC-Ti3Al composites obtained from nano-TiC particles. Ceram. Int. 2016, 42, 9995–10005. [Google Scholar] [CrossRef] [Green Version]
Attribute | TiC | ZrC | NbC | HfC | TaC |
---|---|---|---|---|---|
Crystal structure | FCC | FCC | FCC | FCC | FCC |
Space group | Fm-3 m 225 | Fm-3 m 225 | Fm-3 m 225 | Fm-3 m 225 | Fm-3 m 225 |
Lattice parameters (nm) | a = 0.46000, b = 0.46000, c = 0.46000 | a = 0.46960, b = 0.46960, c = 0.46960 | a = 0.44000, b = 0.44000, c = 0.44000 | a = 0.46410, b = 0.46410, c = 0.46410 | a = 0.44460, b = 0.44460, c = 0.44460 |
Resistivity (μΩ·cm) | 68 | 63 | 74 | 109 | 30 |
Thermal conductivity (W/m·K) | 21 | 20.5 | 14 | 20 | - |
Theoretical density (g/cm3) | 4.94 | 6.73 | 7.6 | 12.7 | 14.3 |
Melting point (°C) | 3140 | 3540 | 3500 | 3890 | 3880 |
Vickers hardness (GPa) | 25.1 | 27 | 20 | 26 | 14–19 |
Coefficient of thermal expansion (10−6 K−1) | 7.74 | 6.7 | 6.65 | 6.73 | 8.3 |
Modulus of elasticity (GPa) | 451 | 480 | 338 | 300~400 | 470~540 |
Fracture toughness (MPa m1/2) | 5.1 | 2 | - | - | 3.4 |
Bending strength (MPa) | 240–400 | 400 | - | 250–350 | 600–700 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, H.; Zhang, Y.; Wang, J.; Cui, K.; Liu, H.; Yang, J. Microstructure, Mechanical Properties, and Reinforcement Mechanism of Second-Phase Reinforced TiC-Based Composites: A Review. Coatings 2022, 12, 801. https://doi.org/10.3390/coatings12060801
Mao H, Zhang Y, Wang J, Cui K, Liu H, Yang J. Microstructure, Mechanical Properties, and Reinforcement Mechanism of Second-Phase Reinforced TiC-Based Composites: A Review. Coatings. 2022; 12(6):801. https://doi.org/10.3390/coatings12060801
Chicago/Turabian StyleMao, Haobo, Yingyi Zhang, Jie Wang, Kunkun Cui, Hanlei Liu, and Jialong Yang. 2022. "Microstructure, Mechanical Properties, and Reinforcement Mechanism of Second-Phase Reinforced TiC-Based Composites: A Review" Coatings 12, no. 6: 801. https://doi.org/10.3390/coatings12060801
APA StyleMao, H., Zhang, Y., Wang, J., Cui, K., Liu, H., & Yang, J. (2022). Microstructure, Mechanical Properties, and Reinforcement Mechanism of Second-Phase Reinforced TiC-Based Composites: A Review. Coatings, 12(6), 801. https://doi.org/10.3390/coatings12060801