The Cracking Resistance Behavior of Geosynthetics-Reinforced Asphalt Concrete under Lower Temperatures Using Bending Test
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geosynthetics
2.2. Asphalt Mix Design
2.3. Sample Production
2.4. Bending Tests
- —Flexural tensile strength of specimen at failure, MPa.
- —Maximum bending tensile strain of specimen at failure, με.
- —Bending stiffness modulus of specimen at failure, MPa.
- b—Mid-span width of specimen, mm.
- h—Mid-span height of specimen, mm.
- L—The span length of specimen, mm.
- —Maximum load of specimen, N.
- —Mid-span deflection of specimen in failure, mm.
3. Results and Discussion
3.1. The Bending Test Results
3.2. Comparative Analysis with Previous Studies
3.3. Crack Propagation Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Notations | |
UN | Unreinforced asphalt |
CF | Carbon geogrid-reinforced asphalt |
GT | Geotextile-reinforced asphalt |
FP | Glass fiber-reinforced polymer geogrid |
NR | No-reinforcement asphalt |
GF | Reinforced with glass geogrid |
R1 | Reinforced with continuous fiberglass fabric |
R2 | Reinforced with a non-woven polyester fabric and multidirectional fiberglass |
References
- Ferrotti, G.; Canestrari, F.; Virgili, A.; Grilli, A. A Strategic Laboratory Approach for the Performance Investigation of Geogrids in Flexible Pavements. Constr. Build. Mater. 2011, 25, 2343–2348. [Google Scholar] [CrossRef]
- Ferrotti, G.; Canestrari, F.; Pasquini, E.; Virgili, A. Experimental Evaluation of the Influence of Surface Coating on Fiberglass Geogrid Performance in Asphalt Pavements. Geotext. Geomembranes 2012, 34, 11–18. [Google Scholar] [CrossRef]
- Saride, S.; Kumar, V.V. Influence of Geosynthetic-Interlayers on the Performance of Asphalt Overlays on Pre-Cracked Pavements. Geotext. Geomembranes 2017, 45, 184–196. [Google Scholar] [CrossRef]
- Lee, J.H.; Baek, S.B.; Lee, K.H.; Kim, J.S.; Jeong, J.H. Long-Term Performance of Fiber-Grid-Reinforced Asphalt Overlay Pavements: A Case Study of Korean National Highways. J. Traffic Transp. Eng. 2019, 6, 366–382. [Google Scholar] [CrossRef]
- Lee, J.; Kim, Y.R.; Lee, J. Rutting Performance Evaluation of Asphalt Mix with Different Types of Geosynthetics Using MMLS3. Int. J. Pavement Eng. 2015, 16, 894–905. [Google Scholar] [CrossRef]
- Partl, M.N.; Sokolov, K.; Kim, H. Evaluating and Modelling the Effect of Carbon Fiber Grid Reinforcement in a Model Asphalt Pavement. In Proceedings of the Fourth International Conference on FRP Composites in Civil Engineering (CICE2008), Zurich, Switzerland, 22 July 2008; pp. 22–24. [Google Scholar]
- Canestrari, F.; Belogi, L.; Ferrotti, G.; Graziani, A. Shear and Flexural Characterization of Grid-Reinforced Asphalt Pavements and Relation with Field Distress Evolution. Mater. Struct. Constr. 2015, 48, 959–975. [Google Scholar] [CrossRef]
- Zofka, A.; Maliszewski, M.; Maliszewska, D. Glass and Carbon Geogrid Reinforcement of Asphalt Mixtures. Road Mater. Pavement Des. 2017, 18, 471–490. [Google Scholar] [CrossRef]
- Ingrassia, L.P.; Virgili, A.; Canestrari, F. Effect of Geocomposite Reinforcement on the Performance of Thin Asphalt Pavements: Accelerated Pavement Testing and Laboratory Analysis. Case Stud. Constr. Mater. 2020, 12, e00342. [Google Scholar] [CrossRef]
- Ragni, D.; Montillo, T.; Marradi, A.; Canestrari, F. Fast Falling Weight Accelerated Pavement Testing and Laboratory Analysis of Asphalt Pavements Reinforced with Geocomposites; Springer International Publishing: New York, NY, USA, 2020; Volume 48, ISBN 9783030297794. [Google Scholar] [CrossRef]
- Kumar, V.V.; Saride, S. Evaluation of Cracking Resistance Potential of Geosynthetic Reinforced Asphalt Overlays Using Direct Tensile Strength Test. Constr. Build. Mater. 2018, 162, 37–47. [Google Scholar] [CrossRef]
- Spadoni, S.; Ingrassia, L.P.; Paoloni, G.; Virgili, A.; Canestrari, F. Influence of Geocomposite Properties on the Crack Propagation and Interlayer Bonding of Asphalt Pavements. Materials 2021, 14, 5310. [Google Scholar] [CrossRef] [PubMed]
- Ram Kumar, B.A.V.; Jallu, H. Performance of Geogrid Reinforced Asphalt Layers—A Review; Springer: Singapore, 2022; Volume 172, ISBN 9789811643958. [Google Scholar]
Geosynthetic | Direction | Material | Thickness (mm) | Elongation at Rupture (%) | Tensile Force (kN/m) |
---|---|---|---|---|---|
Geotextile | Longitudinal | Polyester glass fiber | 1.2 | 4.6 | 9.40 |
Transversal | Polyester glass fiber | 1.2 | 4.7 | 9.28 | |
Geogrid | Longitudinal | Glass fiber | 0.7 | 3–4.5 | 45.00 |
Transversal | Carbon fiber | 0.7 | 2–2.5 | 76.92 |
Size | Bulk Density(g/cm3) | Apparent Specific Gravity |
---|---|---|
16–22 mm | 2.680 | 2.745 |
11–16 mm | 2.687 | 2.743 |
6–11 mm | 2.681 | 2.748 |
3–6 mm | 2.683 | 2.747 |
0–3 mm (machine-made sand) | 2.617 | 2.737 |
Sieve Size (mm) | AC-13C | AC-20C |
---|---|---|
Passing (%) | Passing (%) | |
26.5 | - | 100.0 |
19 | - | 99.5 |
16 | 100.0 | 90.5 |
13.2 | 98.1 | 75.9 |
9.5 | 76.8 | 61.0 |
4.75 | 50.8 | 40.5 |
2.36 | 36.4 | 30.0 |
1.18 | 26.8 | 22.0 |
0.6 | 17.2 | 14.1 |
0.3 | 11.8 | 9.6 |
0.15 | 8.3 | 6.6 |
0.075 | 6.3 | 5.0 |
- | Void Ratio/% | Aggregate Clearance Rate/% | Asphalt Saturation/% | Stability/kN | Flow Value/mm | Marshall Modulus (kN/mm) |
---|---|---|---|---|---|---|
AC-13C | 3.1 | 11.0 | 77.2 | 14.2 | 3.6 | 3.944 |
AC-20C | 3.5 | 14.2 | 75.0 | 14.4 | 3.4 | 4.364 |
Asphalt Mix | Interface Type | Pmax (N) | δ (mm) | RB (MPa) | εB (με) | SB (MPa) |
---|---|---|---|---|---|---|
AC-13C | Unreinforced | 3780.45 | 0.72 | 9.65 | 5381.250 | 1793.67 |
Geotextile | 3683.78 | 0.73 | 9.41 | 5484.375 | 1714.94 | |
Geogrid | 4311.11 | 0.87 | 11.01 | 6528.075 | 1686.12 | |
AC-20C | Unreinforced | 4012.11 | 0.80 | 10.24 | 6034.200 | 1697.60 |
Geotextile | 3865.55 | 0.75 | 9.87 | 5608.475 | 1759.75 | |
Geogrid | 4504.67 | 0.91 | 11.50 | 6853.325 | 1678.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; He, Y.; Yang, G.; Su, P.; Li, B. The Cracking Resistance Behavior of Geosynthetics-Reinforced Asphalt Concrete under Lower Temperatures Using Bending Test. Coatings 2022, 12, 812. https://doi.org/10.3390/coatings12060812
Li Q, He Y, Yang G, Su P, Li B. The Cracking Resistance Behavior of Geosynthetics-Reinforced Asphalt Concrete under Lower Temperatures Using Bending Test. Coatings. 2022; 12(6):812. https://doi.org/10.3390/coatings12060812
Chicago/Turabian StyleLi, Qiaoyi, Yonghai He, Guangqing Yang, Penghui Su, and Biao Li. 2022. "The Cracking Resistance Behavior of Geosynthetics-Reinforced Asphalt Concrete under Lower Temperatures Using Bending Test" Coatings 12, no. 6: 812. https://doi.org/10.3390/coatings12060812
APA StyleLi, Q., He, Y., Yang, G., Su, P., & Li, B. (2022). The Cracking Resistance Behavior of Geosynthetics-Reinforced Asphalt Concrete under Lower Temperatures Using Bending Test. Coatings, 12(6), 812. https://doi.org/10.3390/coatings12060812