Application of Spectroscopic Analysis for Plasma Polymerization Deposition onto the Inner Surfaces of Silicone Tubes
Abstract
:1. Introduction
2. Optical Emission Spectroscopic Analysis
2.1. Calculation of Electron Temperature and Density
2.2. Sheath Thickness
3. Materials and Methods
3.1. Plasma Source and Polymerization Process
3.2. Material Characterization
3.3. Diagnostics of Plasma Using OES
4. Results and Discussion
4.1. Plasma Generation with Respect to Sheath Thickness
4.2. Plasma Characterization
4.3. Chemical Analysis of the Deposited PP-MMA Polymer Films
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fotovvati, B.; Namdari, N.; Dehghanghadikolaei, A. On Coating Techniques for Surface Protection: A Review. J. Manuf. Mater. Process. 2019, 3, 28. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.K.; Park, D.; Kim, H.; Lee, H.; Park, H.; Kim, H.J.; Jung, D. Bioactive surface modifications on inner walls of poly-tetra-fluoro-ethylene tubes using dielectric barrier discharge. Appl. Surf. Sci. 2014, 296, 79–85. [Google Scholar] [CrossRef]
- Awad, T.S.; Asker, D.; Hatton, B.D. Food-safe modification of stainless steel food processing surfaces to reduce bacterial biofilms. ACS Appl. Mater. Interfaces 2018, 10, 22902–22912. [Google Scholar] [CrossRef] [PubMed]
- Qu, Q.; Shen, Y.; Gu, C.; Gu, Z.; Gu, Q.; Wang, C.; Hu, X. Capillary column coated with graphene oxide as stationary phase for gas chromatography, Analytica. Chim. Acta 2012, 757, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Klages, C.P.; Berger, C.; Eichler, M.; Thomas, M. Microplasma-based treatment of inner surfaces in microfluidic devices. Contrib. Plasma Phys. 2007, 47, 49–56. [Google Scholar] [CrossRef]
- Heidarpour, F.; Wan, W.A.; Ghani, K.; Bin Ahmadun, F.R.; Sobri, S.; Zargar, M.; Mozafari, M.R. Nano silver-coated polypropylene water filter: I. Manufacture by Electron Beam Gun Using a Modified Balzers 760 Machine. Dig. J. Nanomater. Biostruct. 2010, 5, 787–796. [Google Scholar]
- Saha, B.; Toh, W.Q.; Liu, E.; Tor, S.B.; Hardt, D.E.; Lee, J. A review on the importance of surface coating of micro/nano-mold in micro/nano-molding processes. J. Micromech. Microeng. 2016, 26, 013002. [Google Scholar] [CrossRef] [Green Version]
- Kreethawate, L.; Larpkiattaworn, S.; Jiemsirilers, S.; Uchikoshi, T. Inner Surface Coating of Non-Conductive Tubular Substrate Using Electrophoretic Deposition. IOP Conf. Ser. Mater. Sci. Eng. 2011, 18, 062012. [Google Scholar] [CrossRef]
- Kreethawate, L.; Larpkiattaworn, S.; Jiemsirilers, S.; Uchikoshi, T. Application of electrophoretic deposition for inner surface coating of porous ceramic tubes. Surf. Coat. Technol. 2010, 205, 1922–1928. [Google Scholar] [CrossRef]
- Sanchez-Hidalgo, R.; Blanco, C.; Menendez, R.; Verdejo, R.; Lopez-Manchado, M.A. Multifunctional Silicone Rubber Nanocomposites by Controlling the Structure and Morphology of Graphene Material. Polymers 2019, 11, 449. [Google Scholar] [CrossRef] [Green Version]
- Tucekova, Z.K.; Galmiz, O.; Kelar, J.; Kovacik, D.; Stupavska, M.; Sramkova, P.; Zemmnek, M.; Vallade, J.; Cernak, M. Adhesive Properties of Silicone-Coated Release Liner Paper Enhanced by Atmospheric Pressure Plasma Pre- and Post- Treatment. Coatings 2020, 10, 1102. [Google Scholar] [CrossRef]
- Friedrich, J. Mechanisms of plasma polymerization—Reviewed from a chemical point of view. Plasma Process. Polym. 2011, 8, 783–802. [Google Scholar]
- Lauer, L.J.; Shohet, J.L.; Albrecht, R.M.; Esnault, S.; Malter, J.S.; Von Andrian, U.H.; Shohet, S.B. Control of uniformity of plasma-surface modification inside of small-diameter polyethylene tubing using microplasma diagnostics. IEEE Trans. Plasma Sci. 2005, 33, 791–798. [Google Scholar] [CrossRef] [Green Version]
- Mandolfino, C. Polypropylene surface modification by low pressure plasma to increase adhesive bonding: Effect of process parameters. Surf. Coat. Technol. 2019, 366, 331–337. [Google Scholar] [CrossRef]
- Park, C.S.; Jung, E.Y.; Jang, H.J.; Bae, G.T.; Shin, B.J.; Tae, H.S. Synthesis and Properties of Plasma-Polymerized Methyl Methacrylate via the Atmospheric Pressure Plasma Polymerization Technique. Polymers 2019, 11, 396. [Google Scholar] [CrossRef] [Green Version]
- Abdel–Fattah, E. Surface Activation of Poly(Methyl Methacrylate) with Atmospheric Pressure Ar + H2O Plasma. Coatings 2019, 9, 228. [Google Scholar] [CrossRef] [Green Version]
- Langmuir, I. The Interactions of electrons and Positive ions in cathode sheaths. Phys. Rev. 1929, 33, 954–989. [Google Scholar] [CrossRef]
- Fantz, U. Basics of plasma spectroscopy. Plasma Sources Sci. Technol. 2006, 15, S137–S147. [Google Scholar] [CrossRef] [Green Version]
- Vazquez, F.J.G.; Camero, M.; Aleixandre, C.G. Spectroscopic measurements of the electron temperature in low pressure radiofrequency Ar/H2/C2H2 and Ar/H2/CH4 plasmas used for the synthesis of nanocarbon structures. Plasma Sources Sci. Technol. 2006, 15, 42–51. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.M.; Chen, W.C.; Li, J.; Pu, Y.K. Determining the electron temperature and the electron density by a simple collisional radiative model of Ar and xenon in low pressure discharge. J. Phys. D Appl. Phys. 2009, 42, 025203. [Google Scholar] [CrossRef]
- Grill, A. Cold Plasma in Materials Fabrication: From Fundamentals to Applications; Wiley-IEEE Press: Hoboken, NJ, USA, 1994; pp. 13–15. [Google Scholar]
- Auciello, O.; Flamm, D.L. Plasma-Materials Interactions; Academic Press, Inc.: Cambridge, MA, USA, 1990; pp. 5–7. ISBN 0-12-200430-2. [Google Scholar]
- Bogaerts, A.; Gijbels, R.; Vlcek, J. Modeling of glow discharge optical emission spectrometry: Calculation of the Ar atomic optical emission spectrum. Spectrochim. Acta Part B 1998, 53, 1517–1526. [Google Scholar] [CrossRef]
- Li, C.; Hsieh, J.H.; Hu, W.W.; Lin, Y.H. Fabrication and characterization of polymethylmethacrylate (PMMA) thin film by plasma polymerization used for cell culture. Surf. Coat. Technol. 2014, 66, 1–7. [Google Scholar] [CrossRef]
- Chan, V.; Li, C.; Tsai, Y.H.; Tseng, Y.H.; Chen, Y. Cyclopropylamine modified plasma polymerized poly (methyl methacrylate) thin films for cell culture. Int. J. Nanotechnol. 2017, 14, 1045–1065. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Sakib, S.; Mathews, R.; Zhitomirsky, I. Poly(Methyl Methacrylate) Coatings Containing Flame Retardant Additives from Suspensions in Water-2-Propanol. Molecules 2021, 26, 1974. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Kumar, R.; Memon, H. Strongly Hydrophobic and Superoleophilic PMMA Based Nanocoated Cotton Fabrics. Coatings 2020, 10, 943. [Google Scholar] [CrossRef]
- Hosseini, S.; Azari, P.; Jimenez-Moreno, M.F.; Rodriguez-Garcia, A.; Pingguan-Murphy, B.; Madou, M.J.; Martínez-Chapa, S.O. Polymethacrylate Coated Electrospun PHB Fibers as a Functionalized Platform for Bio-Diagnostics: Confirmation Analysis on the Presence of Immobilized IgG Antibodies against Dengue Virus. Sensors 2017, 17, 2292. [Google Scholar] [CrossRef] [Green Version]
Power (Watt) | MMA Monomer Concentration (vol.%) | |||
---|---|---|---|---|
20 | 40 | 60 | 80 | |
50 | √ | |||
100 | √ | √ | √ | √ |
Monomer Concentration (Vol.%) | Electron Temperature (eV) | Electron Density (cm−3) | Debye Length (mm) | Sheath Thickness (mm) | Deposition Rate (nm/min) |
---|---|---|---|---|---|
No Monomer (100% Ar) | 0.9 ± 0.090 | (3.0 ± 0.30) × 1011 | 0.012 ± 0.001 | 1.8 | - |
Ar/20% MMA | 0.86 ± 0.086 | (2.8 ± 0.28) × 1011 | 0.013 ± 0.001 | 2.0 | 5.0 |
Ar/40% MMA | 0.98 ± 0.098 | (2.5 ± 0.25) × 1011 | 0.015 ± 0.001 | 2.3 | 4.3 |
Ar/60% MMA | 1.14 ± 0.114 | (1.60 ± 0.16) × 1011 | 0.020 ± 0.002 | 2.8 | 3.9 |
Ar/80% MMA | 1.1 ± 0.110 | (1.4 ± 0.14) × 1011 | 0.021 ± 0.002 | 3.0 | (no deposition inside the tube) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mishra, H.; Bolouki, N.; Hsieh, S.T.; Li, C.; Wu, W.; Hsieh, J.-H. Application of Spectroscopic Analysis for Plasma Polymerization Deposition onto the Inner Surfaces of Silicone Tubes. Coatings 2022, 12, 865. https://doi.org/10.3390/coatings12060865
Mishra H, Bolouki N, Hsieh ST, Li C, Wu W, Hsieh J-H. Application of Spectroscopic Analysis for Plasma Polymerization Deposition onto the Inner Surfaces of Silicone Tubes. Coatings. 2022; 12(6):865. https://doi.org/10.3390/coatings12060865
Chicago/Turabian StyleMishra, Himanshu, Nima Bolouki, Stephen T. Hsieh, Chuan Li, Weite Wu, and Jang-Hsing Hsieh. 2022. "Application of Spectroscopic Analysis for Plasma Polymerization Deposition onto the Inner Surfaces of Silicone Tubes" Coatings 12, no. 6: 865. https://doi.org/10.3390/coatings12060865
APA StyleMishra, H., Bolouki, N., Hsieh, S. T., Li, C., Wu, W., & Hsieh, J. -H. (2022). Application of Spectroscopic Analysis for Plasma Polymerization Deposition onto the Inner Surfaces of Silicone Tubes. Coatings, 12(6), 865. https://doi.org/10.3390/coatings12060865