Microstructures, Corrosion Resistance and Wear Resistance of High-Entropy Alloys Coatings with Various Compositions Prepared by Laser Cladding: A Review
Abstract
:1. Introduction
2. Laser Cladding HEAs Coatings
2.1. The Chemical Composition System of Laser Cladding HEA Coatings
2.2. The Process Parameters for the Preparation of Laser Cladding HEAs Coatings
2.3. The Post-Treatment of the Heat Treatment and Ultrasonic Assistance
3. Discussion
4. Conclusions and Prospect
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A. 2004, 375, 213–218. [Google Scholar] [CrossRef]
- Zhang, L.S.; Ma, G.L.; Fu, L.C.; Tian, J.Y. Recent Progress in High-Entropy Alloys. Adv. Mater. Res. 2013, 227, 631–632. [Google Scholar] [CrossRef]
- Park, T.; Kim, J.H. Tensile properties and microstructure evolution during two-stage tensile testing of CoCrFeMnNi high-entropy alloy. Mater. Res. Technol. 2020, 9, 7551–7557. [Google Scholar] [CrossRef]
- Liu, F.; Liaw, P.K.; Zhang, Y. Recent Progress with BCC-Structured High-Entropy Alloys. Metals 2022, 12, 501. [Google Scholar] [CrossRef]
- Xu, X.D.; Guo, S.; Nieh, T.G.; Liu, C.T.; Hirata, A.; Chen, M.W. Effects of mixing enthalpy and cooling rate on phase formation of AlxCoCrCuFeNi high-entropy alloys. Materialia 2019, 6, 100292. [Google Scholar] [CrossRef]
- Chang, Y.J.; Yeh, A.C. The evolution of microstructures and high temperature properties of AlxCo1.5CrFeNi1.5Tiy high entropy alloys. J. Alloys Compd. 2015, 653, 379–385. [Google Scholar] [CrossRef]
- Otto, F.; Dlouhý, A.; Somsen, C.; Bei, H.; Eggeler, G.; George, E.P. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 2013, 61, 5743–5755. [Google Scholar] [CrossRef] [Green Version]
- Munitz, A.; Kaufman, M.; Nahmany, M.; Derimow, N.; Abbaschian, R. Microstructure and mechanical properties of heat-treated Al1. 25CoCrCuFeNi high entropy alloys. Mater. Sci. Eng. A. 2018, 714, 146–159. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Q.; Zhou, W.; He, F.; Yu, C.; Lin, D.; Wang, J.; Liu, C.T. Quantitative determination of the lattice constant in high entropy alloys. Scr. Mater. 2019, 162, 468–471. [Google Scholar] [CrossRef]
- Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E.H.; George, E.P.; Ritchie, R.O. A fracture-resistant high-entropy alloy for cryogenic applications. Science 2014, 345, 1153–1158. [Google Scholar] [CrossRef] [Green Version]
- Chuang, M.H.; Tsai, M.H.; Wang, W.R.; Lin, S.J.; Yeh, J.W. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 2011, 59, 6308–6317. [Google Scholar] [CrossRef]
- Chen, J.; Niu, P.; Liu, Y.; Lu, Y.; Wang, X.; Peng, Y.; Liu, J. Effect of Zr content on microstructure and mechanical properties of AlCoCrFeNi high entropy alloy. Mater. Des. 2016, 94, 39–44. [Google Scholar] [CrossRef]
- Zhang, W.; Liaw, P.K.; Zhang, Y. Science and technology in high-entropy alloys. Sci. China Mater. 2018, 61, 2–22. [Google Scholar] [CrossRef] [Green Version]
- Daoud, H.M.; Manzoni, A.M.; Wanderka, N.; Glatzel, U. High-Temperature Tensile Strength of Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex Alloy (High-Entropy Alloy). JOM 2015, 67, 2271–2277. [Google Scholar] [CrossRef]
- He, J.Y.; Liu, W.H.; Wang, Y.; Wu, Z.; Lu, P. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater. 2014, 62, 105–113. [Google Scholar] [CrossRef]
- Fu, Z.; Yang, B.; Gan, K.; Yan, D.; Li, Z.; Gou, G.; Chen, H.; Wang, Z. Improving the hydrogen embrittlement resistance of a selective laser melted high-entropy alloy via modifying the cellular structures. Corros. Sci. 2021, 190, 109695. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Hong, U.T.; Shih, H.C.; Yeh, J.W.; Duval, T. Electrochemical kinetics of the high entropy alloys in aqueous environments—A comparison with type 304 stainless steel. Corros. Sci. 2005, 47, 2679–2699. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Duval, T.; Hung, U.D.; Yeh, J.W.; Shih, H.C. Microstructure and electrochemical properties of high entropy alloys acomparison with type-304 stainless steel. Corros. Sci. 2005, 47, 2257–2279. [Google Scholar] [CrossRef]
- Günen, A. Tribocorrosion behavior of boronized Co1.19Cr1.86Fe1.30Mn1.39Ni1.05Al0.17B0.04 high entropy alloy. Surf Coat Tec. 2021, 421, 127426. [Google Scholar] [CrossRef]
- Karakas, M.S.; Günen, A.; Çarboga, C.; Karaca, Y.; Demir, M.; Altınay, Y.; Erdogan, A. Microstructure. Some mechanical properties and tribocorrosion wear behavior of boronized Al0.07Co1.26Cr1.80Fe1.42Mn1.35Ni1.10 high entropy alloy. J. Alloys Compd. 2021, 886, 161222. [Google Scholar] [CrossRef]
- Wang, W.; Sun, Q.; Wang, D.; Hou, J.; Qi, W.; Li, D.; Xie, L. Microstructure and Mechanical Properties of the ((CoCrFeNi)95Nb5)100−xMox High-Entropy Alloy Coating Fabricated under Different Laser Power. Metals 2021, 11, 1477. [Google Scholar] [CrossRef]
- Lu, Y.; Gao, X.; Jiang, L.; Chen, Z.; Wang, T.; Jie, J.; Kang, H.; Zhang, Y.; Guo, S.; Ruan, H.; et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 2017, 124, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Li, J.; Xu, Y. Investigation into the Corrosion Wear Resistance of CoCrFeNiAlx Laser-Clad Coatings Mixed with the Substrate. Metals 2022, 12, 460. [Google Scholar] [CrossRef]
- Jiang, H.; Jiang, L.; Qiao, D.; Lu, Y.; Wang, T.; Cao, Z.; Li, T. Effect of Niobium on Microstructure and Properties of the CoCrFeNbx Ni High Entropy Alloys. J. Mater. Sci. Technol. 2017, 33, 712–717. [Google Scholar] [CrossRef]
- Wang, L.; Gao, Z.; Wu, M.; Weng, F.; Liu, T.; Zhan, X. Influence of Specific Energy on Microstructure and Properties of Laser Cladded FeCoCrNi High Entropy Alloy. Metals 2020, 10, 1464. [Google Scholar] [CrossRef]
- Padamata, S.K.; Yasinskiy, A.; Yanov, V.; Saevarsdottir, G. Magnetron Sputtering High-Entropy Alloy Coatings: A Mini-Review. Metals 2022, 12, 319. [Google Scholar] [CrossRef]
- Zhao, J.; Ma, A.; Ji, X.; Jiang, J.; Bao, Y. Slurry Erosion Behavior of AlxCoCrFeNiTi0.5 High-Entropy Alloy Coatings Fabricated by Laser Cladding. Metals 2018, 8, 126. [Google Scholar] [CrossRef] [Green Version]
- Löbel, M.; Lindner, T.; Kohrt, C.; Lampke, T. Processing of AlCoCrFeNiTi high entropy alloy by atmospheric plasma spraying. IOP Conf. Ser. Mater. Sci. Eng. 2017, 181, 12015. [Google Scholar] [CrossRef]
- Li, J.; Huang, Y.; Meng, X.; Xie, Y. A Review on High Entropy Alloys Coatings: Fabrication Processes and Property Assessment. Adv. Eng. Mater. 2019, 21, 1900343. [Google Scholar] [CrossRef]
- Shon, Y.; Joshi, S.S.; Katakam, S.; Rajamure, R.S.; Dahotr, N.B. Laser additive synthesis of high entropy alloy coating on aluminum: Corrosion behavior. Mater. Lett. 2015, 142, 122–125. [Google Scholar] [CrossRef]
- Hua, N.B.; Wang, W.J.; Wang, Q.T.; Ye, Y.X.; Lin, S.H.; Zhang, L.; Guo, Q.H.; Brechtl, J.; Liaw, P.K. Mechanical, corrosion, and wear properties of biomedical Ti–Zr–Nb–Ta–Mo high entropy alloys. J. Alloys Compd. 2021, 861, 157997. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, M.; Wang, G.; Yang, X.; Wang, S. Wear and corrosion resistance analysis of FeCoNiTiAlx high-entropy alloy coatings prepared by laser cladding. Coatings 2021, 11, 155. [Google Scholar] [CrossRef]
- Qiua, X. Microstructure and corrosion properties of Al2CrFeCoxCuNiTi high entropy alloys prepared by additive manufacturing. J. Alloys Compd. 2021, 887, 161422. [Google Scholar] [CrossRef]
- Wen, X.; Cui, X.; Jin, G.; Liu, Y.; Zhang, Y.; Fang, Y. In-situ synthesis of nano-lamellar Ni1.5CrCoFe0.5Mo0.1Nbx eutectic highentropy alloy coatings by laser cladding: Alloy design and microstructure evolution. Surf. Coat. Technol. 2021, 405, 126728. [Google Scholar] [CrossRef]
- Wu, B.; Rao, C.; Dai, P. Effect of Silicon Content on the Microstructure and Wear Resistance of FeCoCr0.5NiBSix High-entropy Alloy Coatings. Surf. Technol. 2015, 44, 85–91. [Google Scholar]
- He, W.; Sun, R.; Niu, W.; Li, X.; Gu, M.; Zuo, R. Study on Microstructure and Corrosion Resistance of CoCrFeNiSix High-entropy Alloy Coating by Laser Cladding. Surf. Technol. 2021, 50, 343–348. [Google Scholar]
- Yu, F.; Huang, C.; Du, C.; Li, J.; Dai, C.; Luo, H.; Liu, Z.; Li, X. Evolution in microstructure wear corrosion and tribocorrosion behavior of Mo- containing high-entropy alloy coatings fabricated by laser cladding. Corros Sci. 2021, 191, 109727. [Google Scholar]
- Huang, B.; Zhang, C.; Cheng, H. Microstructure and Wear Resistance of FeCoCrxNiB High-entropy Alloy coatings Prepared by Laser Cladding. China Surf. Eng. 2014, 27, 82–88. [Google Scholar]
- Xu, Q.-L.; Liu, K.-C.; Wang, K.-Y.; Lou, L.Y.; Zhang, Y.; Li, C.-J.; Li, C.X. Al diffusion behavior of CuAlxNiCrFe high-entropy alloys fabricated by high-speed laser cladding for TBC bond coats ScienceDirect. Corros Sci. 2021, 192, 109781. [Google Scholar] [CrossRef]
- An, X.; Liu, Q. Effect of WC particles on the structure and properties of laser melting coated high entropy alloy SiFeCoCrTi coating. Rare Met. Mater. Eng. 2016, 45, 2424–2428. [Google Scholar]
- Yan, G.; Zheng, M.; Ye, Z. In-situ Ti(C, N) reinforced AlCoCrFeNiSi-based high entropy alloy coating with functional gradient double-layer structure fabricated by laser cladding. J. Alloys Compd. 2021, 886, 161252. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, W.; Peng, Y.; Zhang, M.; Liu, Y. Microstructures and Wear Resistance of FeCoCrNi-Mo High Entropy Alloy/Diamond Composite Coatings by High Speed Laser Cladding. Coatings 2020, 10, 300. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Liu, Q. MoFeCrTiWAlNb refractory high-entropy alloy coating fabricated by rectangular-spot laser cladding. Intermetallics 2018, 102, 78–87. [Google Scholar] [CrossRef]
- Cong, N.; Yan, S.; Jia, L.; Huang, G. Characterization of Al0.5FeCu0.7NiCoCr high-entropy alloy coating on aluminum alloy by laser cladding. Opt. Laser Technol. 2018, 105, 257–263. [Google Scholar]
- Shu, F.; Zhang, B.; Liu, T.; Sui, S.; Liu, Y.; He, P.; Liu, B.; Xu, B. Effects of laser power on microstructure and properties of laser cladded CoCrBFeNiSi high-entropy alloy amorphous coatings. Surf. Coat. Technol. 2019, 358, 667–675. [Google Scholar] [CrossRef]
- Chao, Q.; Guo, T.; Jarvis, T.; Wu, X.; Hodgson, P.; Fabijanic, D. Direct Laser Deposition Cladding of AlxCoCrFeNi High Entropy Alloys on a High-temperature Stainless Steel. Surface and Coatings Technology. Surf. Coat. Technol. 2017, 332, 440–451. [Google Scholar] [CrossRef]
- Zhao, R.; Yu, G.; He, X.; Li, H.; Li, S. Research on Laser Cladding Processing for 38MnVS6 by PCA-TOPSIS Method. Acta Armamentarii 2019, 40, 2537–2544. [Google Scholar]
- Liu, H.; Liu, J.; Li, X.; Chen, P.; Yang, H.; Hao, J. Effect of heat treatment on phase stability and wear behavior of laser clad AlCoCrFeNiTi 0.8 high-entropy alloy coatings. Surf. Coat. Technol. 2020, 392, 125758. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, Y.; Vilar, R.; Shen, J. Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V substrate. Mater. Des. 2012, 41, 338–343. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Q.; Han, B.; Song, L.; Li, J.; Zhang, S. Effects of ultrasonic impact treatment on structures and properties of laser cladding Al0.5CoCrFeMnNi high entropy alloy coatings. Mater. Chem. Phys. 2021, 258, 123850. [Google Scholar] [CrossRef]
- Wen, X.; Cui, X.; Jin, G.; Zhang, X.; Zhang, Y.; Zhang, D.; Fang, Y. Design and characterization of FeCrCoAlMn0.5Mo0.1 high-entropy alloy coating by ultrasonic assisted laser cladding. J. Alloys Compd. 2020, 835, 155449. [Google Scholar] [CrossRef]
- Li, G.; Liu, J.; Chang, L. Preparation of CrFeNiSiAl0.5 High Entropy Alloy Coating by Doping Chromite Powder and Its Microstructure and Properties. Surf. Eng. 2021, 50, 271–276. [Google Scholar]
- Chen, G.; Zhang, C.; Tang, Q.; Dai, P. Effect of Boron Addition on the Microstructure and Wear Resistance of FeCoCrNiBx (x = 0.5, 0.75, 1.0, 1.25) High-Entropy alloy Coating Prepared by Laser Cladding. Rare Met. Mater. Eng. 2015, 44, 1418–1422. [Google Scholar]
- Liu, H.; Gao, Q.; Man, J.; Li, X.; Yang, H.; He, J. Microstructure and Properties of CoCrFeMnNiTix High-entropy Alloy Coating by Laser Claddin. Chin. J. Lasers 2021, 49, 1–18. [Google Scholar]
- Chen, L.; Wang, Y.; Hao, X. Lightweight refractory high entropy alloy coating by laser cladding on Ti–6Al–4V surface. Vacuum 2020, 183, 109823. [Google Scholar] [CrossRef]
- Jiang, X.J.; Wang, S.Z.; Fu, H. A novel high-entropy alloy coating on Ti-6Al-4V substrate by laser cladding. Mater. Lett. 2022, 308, 131131. [Google Scholar] [CrossRef]
- Xiang, K.; Chai, L.; Zhang, C.; Guan, H.; Wang, Y.; Ma, Y.; Sun, Q.; Li, Y. Investigation of microstructure and wear resistance of laser-clad CoCrNiTi and CrFeNiTi medium-entropy alloy coatings on Ti sheet—ScienceDirect. Opt. Laser Technol. 2022, 145, 107518. [Google Scholar] [CrossRef]
- Zhao, P.; Li, J.; Zhang, Y.; Li, X.; Xia, M.M.; Yuan, B.G. Wear and high-temperature oxidation resistances of AlNbTaZrx high-entropy alloys coatings fabricated on Ti6Al4V by laser cladding. J. Alloys Compd. 2021, 862, 158405. [Google Scholar] [CrossRef]
- Zhang, S.; Han, B.; Li, M.; Zhang, Q.; Hu, C.; Niu, S.; Li, Z.; Wang, Y. Investigation on solid particles erosion resistance of laser cladded CoCrFeNiTi high entropy alloy coating. Intermetallics 2021, 131, 107111. [Google Scholar] [CrossRef]
Process Parameters | HEAs | Substrate Materials | Phase (Minor-Major) | All Possible Strengthening Mechanism | Optimal Performance | Ref. |
---|---|---|---|---|---|---|
LP 2000 W SR 4 mm/s OR 50% | FeCoCr0.5NiBSix | 45 steel | FCC, M2B | Fine grain strengthening | H = 820 HV | [36] |
LP 800 W SR 8 mm/s OR 50% SD 2 mm | CoCrFeNiSix | 45 steel | FCC at x = 0; FCC + BCC at x = 0.5, 1.0, 1.5, BCC at x = 2.0 | Fine grain strengthening | H = 586.5 HV FC = 0.49 | [37] |
LP 700 W SR 7.5 mm/s OR 40 % SD 1 mm | CoCr2FeNiMox | Q235 | FCC at x = 0, 0.1; FCC + σ-CrMo at x = 0.3, 0.4 | Solid solution strengthening + precipitation strengthening | H = 724.2 HV FC = 0.42 CP = 29.6 μA/cm2 | [38] |
LP 1200 W SR 3 mm/s OR 50% SD 2.5 mm | FeCoCrxNiB | 45 steel | FCC+ M2B | Solid solution strengthening | H = 860 HV | [39] |
LP 2500 W SR 4 mm/s PFR 24 g/min OR 80% | CuAlxNiCrFe | Nickel-based superalloy | FCC at x = 0.5,1.0; FCC + BCC at x = 1.5, 2.0 | Fine grain strengthening | Excellent oxidation resistance | [40] |
LP 3800 W SR 4 mm/s OR 30% SD 3 mm | SiFeCoCrTiWCx | Q235 | BCC + Co1.07Fe18.93 at WC = 0; BCC + TiCo3, Co1.07Fe18.93 at WC = 0.2 | Solid solution strengthening + fine grain strengthening | H = 578.6 HV FC = 0.357 WR = 0.08 mg/min | [41] |
LP 3000~5 000 W SR 30~60 mm/min SD 4.6 mm | FeCoCrNi-Mo and diamond | 42CrMo steel | Solid solution strengthening | H = 602 HV FC = 0.41 | [43] | |
LP 2400 W~3200 W SR 3~5 mm/s SD 10 × 2 mm | MoFeCrTiWAlNb | M2 tool steel | FCC + (Nb, Ti)C carbides+Fe2Nb | H = 1050 HV FC = 0.55 | [44] | |
LP 1100 W SR 270~630 mm/min SD 2 mm | Al0.5FeCu0.7NiCoCr | 5083 aluminum | FCC + BCC | H = 750 HV | [45] | |
Laser power 233~700 W | CoCrBFeNiSi | H13 steel | FeNi3 + β(Co) + Co2B | H = 1192.5 HV FC = 0.14 | [46] | |
LP 3100 W SR 5 mm/s SD 10 × 2 mm | CrFeNiSiAl0.5 + chromite powder | 40Cr | BCC at chromite powder = 0; BCC + FCC at chromite powder = 10%, 15% | Dispersion strengthening + solid solution strengthening + fine grain strengthening | H = 838.1 HV WR = 0.14 mg/min | [53] |
LP 1700 W SR 6 mm/s OR 25% SD 4 mm | FeCoCrNiBx | Q235 | FCC at x = 0.5, 0.75;FCC + M3B at x = 1.0, 1.25 | Dispersion strengthening | H = 865.3 HV WR = 0.09 mg/min | [54] |
LP 1500 W SR 5 mm/s PFD 3 g/min OR 60% SD 2.5 mm | CoCrFeMnNiTix | 45 steel | FCC + TiC | Solid solution strengthening + second phase strengthening | H = 364.5 HV FC = 0.72 CP = 4.60 × 10−6 A·cm−2 | [55] |
LP 3700 W SR 10 mm/s | AlTiVMoNb | TC4 | BCC | H = 885.5 HV | [56] | |
LP 600 W SR 2 mm/s PFD 3.5 g/min SD 1.44 mm | TiZrAlNbCo | TC4 | FCC + BCC | H = 689.4 HV CP = 3.66 × 10−9 A/cm2 | [57] | |
LP 3600 W SR 3 mm/s OR 50% | CoCrNiTi | Pure Ti sheet | BCC + Laves | H = 762 HV; WR = 1.7 × 10−5 mm3⋅N−1⋅m−1 | [58] | |
LP 3000 W SR 5 mm/s OR 50% SD 6 mm | AlNbTaZrx | Ti6Al4V | BCC + HCP | Fine grain strengthening | H = 650 HV FC = 0.8 | [59] |
LP 3000 W SR 4 mm/s OR 30% SD 1 mm | CoCrFeNiTi | 304 | FCC + Laves | CoCrFeNiTi H = 568 HV | [60] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, K.; Zhu, J.; Guo, D.; Yang, M.; Sun, H.; Wang, Z.; Hui, X.; Wu, Y. Microstructures, Corrosion Resistance and Wear Resistance of High-Entropy Alloys Coatings with Various Compositions Prepared by Laser Cladding: A Review. Coatings 2022, 12, 1023. https://doi.org/10.3390/coatings12071023
Lu K, Zhu J, Guo D, Yang M, Sun H, Wang Z, Hui X, Wu Y. Microstructures, Corrosion Resistance and Wear Resistance of High-Entropy Alloys Coatings with Various Compositions Prepared by Laser Cladding: A Review. Coatings. 2022; 12(7):1023. https://doi.org/10.3390/coatings12071023
Chicago/Turabian StyleLu, Kefeng, Jian Zhu, Delin Guo, Minghui Yang, Huajian Sun, Zekun Wang, Xidong Hui, and Yongling Wu. 2022. "Microstructures, Corrosion Resistance and Wear Resistance of High-Entropy Alloys Coatings with Various Compositions Prepared by Laser Cladding: A Review" Coatings 12, no. 7: 1023. https://doi.org/10.3390/coatings12071023
APA StyleLu, K., Zhu, J., Guo, D., Yang, M., Sun, H., Wang, Z., Hui, X., & Wu, Y. (2022). Microstructures, Corrosion Resistance and Wear Resistance of High-Entropy Alloys Coatings with Various Compositions Prepared by Laser Cladding: A Review. Coatings, 12(7), 1023. https://doi.org/10.3390/coatings12071023