Special Issue: Nondestructive Evaluation of Material Surfaces: Theory, Techniques, and Applications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giurlani, W.; Berretti, E.; Innocenti, M.; Lavacchi, A. Measuring the Thickness of Metal Coatings: A Review of the Methods. Coatings 2020, 10, 1211. [Google Scholar] [CrossRef]
- Ostiguy, P.-C.; Quaegebeur, N.; Masson, P. Non-destructive evaluation of coating thickness using guided waves. NDT E Int. 2015, 76, 17–25. [Google Scholar] [CrossRef]
- Zhang, J.; Cho, Y.; Kim, J.; Malikov, A.K.U.; Kim, Y.H.; Yi, J.-H.; Li, W. Non-Destructive Evaluation of Coating Thickness Using Water Immersion Ultrasonic Testing. Coatings 2021, 11, 1421. [Google Scholar] [CrossRef]
- Ma, Z.; Zhao, Y.; Luo, Z.; Lin, L. Ultrasonic Characterization of Thermally Grown Oxide in Thermal Barrier Coating by Re-flection Coefficient Amplitude Spectrum. Ultrasonics 2014, 54, 1005–1009. [Google Scholar] [CrossRef] [PubMed]
- Siang, T.W.; Firdaus Akbar, M.; Nihad Jawad, G.; Yee, T.S.; Mohd Sazali, M.I. A Past, Present, and Prospective Review on Microwave Nondestructive Evaluation of Composite Coatings. Coatings 2021, 11, 913. [Google Scholar] [CrossRef]
- Newaz, G.; Chen, X. Progressive Damage Assessment in Thermal Barrier Coatings Using Thermal Wave Imaging Technique. Surf. Coat. Technol. 2005, 190, 7–14. [Google Scholar] [CrossRef]
- Avdelidis, N.; Hawtin, B.; Almond, D. Transient thermography in the assessment of defects of aircraft composites. NDT E Int. 2003, 36, 433–439. [Google Scholar] [CrossRef]
- Petersen, C.; Rajagopalan, N.; Markos, C.; Israelsen, N.; Rodrigo, P.; Woyessa, G.; Tidemand-Lichtenberg, P.; Pedersen, C.; Weinell, C.; Kiil, S.; et al. Non-Destructive Subsurface Inspection of Marine and Protective Coatings Using Near- and Mid-Infrared Optical Coherence Tomography. Coatings 2021, 11, 877. [Google Scholar] [CrossRef]
- Yuan, B.; Wang, W.; Ye, D.; Zhang, Z.; Fang, H.; Yang, T.; Wang, Y.; Zhong, S. Nondestructive Evaluation of Thermal Barrier Coatings Thickness Using Terahertz Technique Combined with PCA–GA–ELM Algorithm. Coatings 2022, 12, 390. [Google Scholar] [CrossRef]
- Ye, D.; Wang, W.; Yin, C.; Xu, Z.; Fang, H.; Huang, J.; Li, Y. Nondestructive Evaluation of Thermal Barrier Coatings Interface Delamination Using Terahertz Technique Combined with SWT-PCA-GA-BP Algorithm. Coatings 2020, 10, 859. [Google Scholar] [CrossRef]
- Jeong, Y.; Lee, S.-H.; Park, S.J.; Roh, Y.; Moon, B.; Lee, G.; Kang, S.W.; Ju, B.-K.; Seo, M.; Jhon, Y.M. Sensitive non-destructive real-time monitoring of blue OLED materials on extreme surface using terahertz near-field enhancement. Appl. Surf. Sci. 2022, 584, 152611. [Google Scholar] [CrossRef]
- Sato, K.; Tamai, A.; Ohara, K.; Kiuchi, H.; Matsubara, E. Non-destructive observation of plated lithium distribution in a large-scale automobile Li-ion battery using synchrotron X-ray diffraction. J. Power Sources 2022, 535, 231399. [Google Scholar] [CrossRef]
- Samaei, A.; Chaudhuri, S. Mechanical performance of zirconia-silica bilayer coating on aluminum alloys with varying porosities: Deep learning and microstructure-based FEM. Mater. Des. 2021, 207, 109860. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, J.; Hu, Z.; Chen, N.; Yang, Z.; Shen, J. Design of a Deep Learning Visual System for the Thickness Measurement of Each Coating Layer of TRISO-Coated Fuel Particles. Measurement 2022, 191, 110806. [Google Scholar] [CrossRef]
- Ficzere, M.; Mészáros, L.A.; Kállai-Szabó, N.; Kovács, A.; Antal, I.; Nagy, Z.K.; Galata, D.L. Real-time coating thickness measurement and defect recognition of film coated tablets with machine vision and deep learning. Int. J. Pharm. 2022, 623, 121957. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Miao, J.; Lu, Y.; Tong, Z. Machine learning of materials design and state prediction for lithium ion batteries. Chin. J. Chem. Eng. 2021, 37, 1–11. [Google Scholar] [CrossRef]
- Fu, Y.; Downey, A.R.; Yuan, L.; Zhang, T.; Pratt, A.; Balogun, Y. Machine learning algorithms for defect detection in metal laser-based additive manufacturing: A review. J. Manuf. Process. 2022, 75, 693–710. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paramsamy Kannan, V.; Barile, C. Special Issue: Nondestructive Evaluation of Material Surfaces: Theory, Techniques, and Applications. Coatings 2022, 12, 960. https://doi.org/10.3390/coatings12070960
Paramsamy Kannan V, Barile C. Special Issue: Nondestructive Evaluation of Material Surfaces: Theory, Techniques, and Applications. Coatings. 2022; 12(7):960. https://doi.org/10.3390/coatings12070960
Chicago/Turabian StyleParamsamy Kannan, Vimalathithan, and Claudia Barile. 2022. "Special Issue: Nondestructive Evaluation of Material Surfaces: Theory, Techniques, and Applications" Coatings 12, no. 7: 960. https://doi.org/10.3390/coatings12070960
APA StyleParamsamy Kannan, V., & Barile, C. (2022). Special Issue: Nondestructive Evaluation of Material Surfaces: Theory, Techniques, and Applications. Coatings, 12(7), 960. https://doi.org/10.3390/coatings12070960