Corrosion and Degradation of Materials
Author Contributions
Funding
Conflicts of Interest
References
- Chen, J.; Wang, J.; Han, E.; Dong, J.; Ke, W. AC impedance spectroscopy study of the corrosion behavior of an AZ91 magnesium alloy in 0.1 M sodium sulfate solution. Electrochim. Acta 2007, 52, 3299–3309. [Google Scholar] [CrossRef]
- Chen, J.; Wang, J.; Han, E.; Dong, J.; Ke, W. States and transport of hydrogen in the corrosion process of AZ91 Alloy in aqueous solution. Corros. Sci. 2008, 50, 1292–1305. [Google Scholar] [CrossRef]
- Chen, J.; Asmussen, R.M.; Zagidulin, D.; Noel, J.J.; Shoesmith, D.W. Electrochemical and corrosion behavior of a 304 stainless-steel-based metal alloy wasteform in dilute aqueous environments. Corros. Sci. 2013, 66, 142–152. [Google Scholar] [CrossRef]
- Chen, J.; Qin, Z.; Shoesmith, D.W. Long-term corrosion of copper in a dilute anaerobic sulfide solution. Electrochim. Acta 2011, 56, 7854–7861. [Google Scholar] [CrossRef]
- Chen, J.; Qin, Z.; Wu, L.; Noël, J.J.; Shoesmith, D.W. The influence of sulphide transport on the growth and properties of copper sulphide films on copper. Corros. Sci. 2014, 87, 233–238. [Google Scholar] [CrossRef]
- Chen, J.; Qin, Z.; Martino, T.; Shoesmith, D.W. Non-uniform film growth and micro/macro-galvanic corrosion of copper in aqueous sulphide solutions containing chloride. Corros. Sci. 2017, 114, 72–78. [Google Scholar] [CrossRef]
- Chen, J.; Qin, Z.; Martino, T.; Guo, M.; Shoesmith, D.W. Copper transport and sulphide sequestration during copper corrosion in anaerobic aqueous sulphide solutions. Corros. Sci. 2018, 131, 245–251. [Google Scholar] [CrossRef]
- Guo, M.; Chen, J.; Lilja, C.; Dehnavi, V.; Behazin, M.; Noël, J.J.; Shoesmith, D.W. The anodic formation of sulfide and oxide films on copper in borate-buffered aqueous chloride solutions containing sulfide. Electrochim. Acta 2020, 362, 137087. [Google Scholar] [CrossRef]
- Yang, Y.; Yin, B.; Shang, Y.; Wang, X.; Chen, J. Preparation and characterization of novel TiB2-12 (Fe-Co-Cr-Ni) cermets and their corrosion resistance in molten aluminum. Corros. Sci. 2021, 190, 109643. [Google Scholar] [CrossRef]
- Qiao, Y.; Wang, X.; Yang, L.; Wang, X.; Chen, J.; Wang, Z.; Zhou, H.; Zou, J.; Wang, F. Effect of aging treatment on microstructure and corrosion behavior of a Fe-18Cr-15Mn-0.66N stainless steel. J. Mater. Sci. Technol. 2022, 107, 197–206. [Google Scholar] [CrossRef]
- Wang, J.; Ming, H.; Zhang, Z.; Chen, J.; Wang, J. Microstructure and micro-hardness of dissimilar metal cladding from a pipe–nozzle mockup for PWR. Coatings 2022, 12, 525. [Google Scholar] [CrossRef]
- Ma, Y.; Yuan, B.; Liu, Y.; Wang, J.; Su, X. Effect of annealing and oxidation on the microstructure evolution of hot-dipped aluminide Q345 steel with silicon sddition. Coatings 2022, 12, 503. [Google Scholar] [CrossRef]
- Wang, B.; Hou, J.; Luan, J.; Xu, D.; Sun, H.; Sun, J. The corrosion behaviors of an as-rolled Mg-8Li (in wt.%) alloy in two differently concentrated NaCl solutions. Coatings 2022, 12, 406. [Google Scholar] [CrossRef]
- Xie, X.; Yin, B.; Yin, F.; Ouyang, X. Corrosion behavior of FeB-30 wt.% Al0.25FeNiCoCr cermet coating in liquid zinc. Coatings 2021, 11, 622. [Google Scholar] [CrossRef]
- Fang, K.; Luo, K.; Wang, L.; Li, C.; Wang, L.; Qiao, Y. Environmental fatigue behavior of a Z3CN20.09M stainless steel in high temperature water. Coatings 2022, 12, 317. [Google Scholar] [CrossRef]
- Sheng, S.; Zhou, H.; Wang, X.; Qiao, Y.; Yuan, H.; Chen, J.; Yang, L.; Wang, D.; Liu, Z.; Zou, J.; et al. Friction and wear behaviors of Fe-19Cr-15Mn-0.66N steel at high temperature. Coatings 2021, 11, 1285. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, X.; Shen, X.; Fu, F.; Tan, Z. Wear and corrosion resistance of CoCrFeNiSiMoW medium-entropy alloy coatings on Q235 steel. Coatings 2021, 11, 1053. [Google Scholar] [CrossRef]
- Huang, J.; Yang, M.; Zhu, W.; Tang, K.; Zhang, H.; Chen, J.; Noël, J.J.; Barker, I.; Zhang, H.; Zhu, J. Extrusion-free fabrication of zinc-rich powder coatings: Press bonding. Chem. Eng. J. 2022, 442, 135925. [Google Scholar] [CrossRef]
- Yang, S.; Huang, J.; Chen, J.; Noël, J.J.; Barker, I.; Henderson, J.D.; He, P.; Zhang, H.; Zhang, H.; Zhu, J. A comparative study on the anti-corrosive performance of zinc phosphate in powder coatings. Coatings 2022, 12, 217. [Google Scholar] [CrossRef]
- Cheng, B.; Chen, H.; Asempah, I.; Wang, J.; Zhu, Y.; Wan, J.; Jiang, F.; Wang, Z.; Shui, Y.; Wang, L.; et al. Self-formed diffusion layer in Cu(Re) alloy film for barrierless copper metallization. Coatings 2022, 12, 613. [Google Scholar] [CrossRef]
- Liu, S.; Chen, J.; Zhang, D.; Wang, Y.; He, Z.; Guo, P. Properties of micro-arc oxidation coatings on 5052 Al alloy sealed by SiO2 nanoparticles. Coatings 2022, 12, 373. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, C.; Tan, J.; Wang, Y.; He, Z. Ti/SnO2-Sb2Ox-TiO2 electrodeposited from methanesulfonate electrolytes: Preparation, properties, and performance. Coatings 2022, 12, 366. [Google Scholar] [CrossRef]
- Ding, J.; He, W.; Liu, Y.; Zhang, C.; Wang, H.; Han, E.-H. Numerical simulation of crevice corrosion of stainless steel–titanium in NaCl solution. Coatings 2022, 12, 592. [Google Scholar] [CrossRef]
- Ni, Z.; Cao, X.; Wang, X.; Zhou, S.; Zhang, C.; Xu, B.; Ni, Y. Facile synthesis of copper(I) oxide nanochains and the photo-thermal conversion performance of its nanofluids. Coatings 2021, 11, 749. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, X.; Zhou, Y.; Gao, F. Optimization study of fluffy materials flocking drainage pipes to resist blockage based on MD binding energy. Coatings 2021, 11, 853. [Google Scholar] [CrossRef]
- Li, Z.; Chen, S.; Meng, L.; Gao, Y.; Yang, Z.; Shi, M.; Chen, X.; Zhang, H.; Zhang, Y. On the effects of high and ultra-high rotational speeds on the strength, corrosion resistance, and microstructure during friction stir welding of Al 6061-T6 and 316L SS alloys. Coatings 2021, 11, 1550. [Google Scholar] [CrossRef]
- Baghbaderani, M.Z.; Abazari, S.; Bakhsheshi-Rad, H.R.; Ismail, A.F.; Sharif, S.; Najafinezhad, A.; Ramakrishna, S.; Daroonparvar, M.; Berto, F. Dual synergistic effects of MgO-GO fillers on degradation behavior, biocompatibility and antibacterial activities of chitosan coated Mg alloy. Coatings 2022, 12, 63. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Qiao, Y.; Meng, F.; Wang, Y. Corrosion and Degradation of Materials. Coatings 2022, 12, 969. https://doi.org/10.3390/coatings12070969
Chen J, Qiao Y, Meng F, Wang Y. Corrosion and Degradation of Materials. Coatings. 2022; 12(7):969. https://doi.org/10.3390/coatings12070969
Chicago/Turabian StyleChen, Jian, Yanxin Qiao, Fanjiang Meng, and Yuxin Wang. 2022. "Corrosion and Degradation of Materials" Coatings 12, no. 7: 969. https://doi.org/10.3390/coatings12070969
APA StyleChen, J., Qiao, Y., Meng, F., & Wang, Y. (2022). Corrosion and Degradation of Materials. Coatings, 12(7), 969. https://doi.org/10.3390/coatings12070969