Preparation and Performance Evaluation of X-ray-Shielding Barium Sulfate Film for Medical Diagnosis Using PET Recycling and Multi-Carrier Principles
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shoag, J.M.; Burns, K.M.; Kahlon, S.S.; Parsons, P.J.; Bijur, P.E.; Taragin, B.H.; Markowitz, M. Lead poisoning risk assessment of radiology workers using lead shields. Arch. Environ. Occup. Health 2019, 75, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Özdemir, T.; Güngör, A.; Akbay, I.; Uzun, H.; Babucçuoglu, Y. Nano lead oxide and epdm composite for development of polymer based radiation shielding material: Gamma irradiation and attenuation tests. Radiat. Phys. Chem. 2018, 144, 248–255. [Google Scholar] [CrossRef]
- AbuAlRoos, N.J.; Amin, N.A.B.; Zainon, R. Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine: A review. Radiat. Phys. Chem. 2019, 165, 108439. [Google Scholar] [CrossRef]
- Panetta, C.J.; Galbraith, E.M.; Yanavitski, M.; Koller, P.K.; Shah, B.; Iqbal, S.; Cigarroa, J.E.; Gordon, G.; Rao, S.V. Reduced radiation exposure in the cardiac catheterization laboratory with a novel vertical radiation shield. Catheter. Cardiovasc. Interv. 2019, 95, 7–12. [Google Scholar] [CrossRef]
- Lu, H.; Boyd, C.; Dawson, J. Lightweight Lead Aprons: The Emperor’s New Clothes in the Angiography Suite? Eur. J. Vasc. Endovasc. Surg. 2019, 57, 730–739. [Google Scholar] [CrossRef]
- Tekin, H.; Kavaz, E.; Papachristodoulou, A.; Kamislioglu, M.; Agar, O.; Guclu, E.A.; Kilicoglu, O.; Sayyed, M. Characterization of SiO2–PbO–CdO–Ga2O3 glasses for comprehensive nuclear shielding performance: Alpha, proton, gamma, neutron radiation. Ceram. Int. 2019, 45, 19206–19222. [Google Scholar] [CrossRef]
- Azman, N.Z.N.; Musa, N.F.L.; Ab Razak, N.N.A.N.; Ramli, R.M.; Mustafa, I.S.; Rahman, A.A.; Yahaya, N.Z. Effect of Bi2O3 particle sizes and addition of starch into Bi2O3–PVA composites for X-ray shielding. Appl. Phys. A 2016, 122, 818. [Google Scholar] [CrossRef]
- Aral, N.; Duch, M.A.; Ardanuy, M. Material characterization and Monte Carlo simulation of lead and non-lead X-Ray shielding materials. Radiat. Phys. Chem. 2020, 174, 108892. [Google Scholar] [CrossRef]
- Chanthima, N.; Kaewkhao, J. Investigation on radiation shielding parameters of bismuth borosilicate glass from 1keV to 100GeV. Ann. Nucl. Energy 2013, 55, 23–28. [Google Scholar] [CrossRef]
- Khan, M.U.; Ahmad, S.; Naqvi, A.A.; Al-Gahtani, H.J. Shielding performance of heavy-weight ultra-high-performance concrete against nuclear radiation. Prog. Nucl. Energy 2020, 130, 103550. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, J. Liquid Metal Based Stretchable Radiation-Shielding Film. J. Med. Devices 2015, 9, 014502. [Google Scholar] [CrossRef]
- Li, R.; Gu, Y.; Wang, Y.; Yang, Z.; Li, M.; Zhang, Z. Effect of particle size on gamma radiation shielding property of gadolinium oxide dispersed epoxy resin matrix composite. Mater. Res. Express 2017, 4, 035035. [Google Scholar] [CrossRef]
- Eskalen, H.; Kavun, Y.; Kerli, S.; Eken, S. An investigation of radiation shielding properties of boron doped ZnO thin films. Opt. Mater. 2020, 105, 109871. [Google Scholar] [CrossRef]
- Gilys, L.; Griškonis, E.; Griškevičius, P.; Adlienė, D. Lead Free Multilayered Polymer Composites for Radiation Shielding. Polymers 2022, 14, 1696. [Google Scholar] [CrossRef]
- Li, Q.; Zhong, R.; Xiao, X.; Liao, J.; Liao, X.; Shi, B. Lightweight and Flexible Bi@Bi-La Natural Leather Composites with Superb X-ray Radiation Shielding Performance and Low Secondary Radiation. ACS Appl. Mater. Interfaces 2020, 12, 54117–54126. [Google Scholar] [CrossRef]
- Sazali, M.A.; Rashid, N.K.A.; Hamzah, K. A review on multilayer radiation shielding. IOP Conf. Ser. Mater. Sci. Eng. 2019, 555, 012008. [Google Scholar] [CrossRef]
- Kang, J.H.; Oh, S.H.; Oh, J.-I.; Kim, S.-H.; Choi, Y.-S.; Hwang, E.-H. Protection evaluation of non-lead radiation-shielding fabric: Preliminary exposure-dose study. Oral Radiol. 2018, 35, 224–229. [Google Scholar] [CrossRef]
- Li, Q.; Wei, Q.; Zheng, W.; Zheng, Y.; Okosi, N.; Wang, Z.; Su, M. Enhanced Radiation Shielding with Conformal Light-Weight Nanoparticle–Polymer Composite. ACS Appl. Mater. Interfaces 2018, 10, 35510–35515. [Google Scholar] [CrossRef]
- Singh, A.K.; Singh, R.K.; Sharma, B.; Tyagi, A.K. Characterization and biocompatibility studies of lead free X-ray shielding polymer composite for healthcare application. Radiat. Phys. Chem. 2017, 138, 9–15. [Google Scholar] [CrossRef]
- Baek, Y.M.; Shin, P.S.; Kim, J.H.; Park, H.S.; Kwon, D.J.; Park, J.M. Comparison of Mechanical and Interfacial Properties of Carbon Fiber Reinforced Recycled PET Composites with Thermoforming Temperature and Time. Compos. Res. 2017, 30, 175–180. [Google Scholar] [CrossRef]
- Şakar, E.; Özpolat, F.; Alım, B.; Sayyed, M.; Kurudirek, M. Phy-X/PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 2019, 166, 108496. [Google Scholar] [CrossRef]
- Cheewasukhanont, W.; Limkitjaroenporn, P.; Kothan, S.; Kedkaew, C.; Kaewkhao, J. The effect of particle size on radiation shielding properties for bismuth borosilicate glass. Radiat. Phys. Chem. 2020, 172, 108791. [Google Scholar] [CrossRef]
- EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP); Lambré, C.; Baviera, J.M.B.; Bolognesi, C.; Chesson, A.; Cocconcelli, P.S.; Crebelli, R.; Gott, D.M.; Grob, K.; Mengelers, M.; et al. Safety assessment of the process Plastrec, based on Polymetrix pellet technology, used to recycle post‐consumer PET into food contact materials. EFSA J. 2021, 19, e06560. [Google Scholar] [CrossRef] [PubMed]
- Jabłońska, B.; Kiełbasa, P.; Korenko, M.; Dróżdż, T. Physical and Chemical Properties of Waste from PET Bottles Washing as A Component of Solid Fuels. Energies 2019, 12, 2197. [Google Scholar] [CrossRef] [Green Version]
- Botelho, M.; Künzel, R.; Okuno, E.; Levenhagen, R.; Basegio, T.; Bergmann, C. X-ray transmission through nanostructured and microstructured CuO materials. Appl. Radiat. Isot. 2010, 69, 527–530. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-W.; Kweon, D.C. Evaluation of radiation dose reduction by barium composite shielding in an angiography system. Radiat. Eff. Defects Solids 2020, 176, 368–381. [Google Scholar] [CrossRef]
- Salehiyan, R.; Ray, S.S. Tuning the Conductivity of Nanocomposites through Nanoparticle Migration and Interface Crossing in Immiscible Polymer Blends: A Review on Fundamental Understanding. Macromol. Mater. Eng. 2018, 304, 1800431. [Google Scholar] [CrossRef]
- Choi, Y.I.; Ye, S.Y.; Kim, J.H. Evaluation of the Apron Effectiveness during Handling Radiopharmaceuticals in PET/CT Work Environment. J. Radiol. Sci. Technol. 2015, 38, 237–244. [Google Scholar] [CrossRef]
- Harwood, J.R.; Nelli, F.E. A model-based algorithm to correct for the loss of backscatter in superficial X-ray radiation therapy. Phys. Med. 2019, 65, 157–166. [Google Scholar] [CrossRef]
- Mahesh, M. Radiation Dose Management for Fluoroscopically Guided Interventional Medical Procedures. Med. Phys. 2012, 39, 5789–5790. [Google Scholar] [CrossRef]
- Yun, J.; Hou, J.; Jang, W.; Kim, S.; Byun, H. Electrospun Tungsten‐Polyurethane Composite Nanofiber Mats for Medical Radiation‐Shielding Applications. ChemNanoMat 2021, 8, e202100387. [Google Scholar] [CrossRef]
- Sharma, A.; Sayyed, M.; Agar, O.; Kaçal, M.; Polat, H.; Akman, F. Photon-shielding performance of bismuth oxychloride-filled polyester concretes. Mater. Chem. Phys. 2019, 241, 122330. [Google Scholar] [CrossRef]
- More, C.V.; Alsayed, Z.; Badawi, M.S.; Thabet, A.A.; Pawar, P.P. Polymeric composite materials for radiation shielding: A review. Environ. Chem. Lett. 2021, 19, 2057–2090. [Google Scholar] [CrossRef]
- Silva, A.L.P.; Prata, J.C.; Walker, T.R.; Campos, D.; Duarte, A.C.; Soares, A.M.; Barcelò, D.; Rocha-Santos, T. Rethinking and optimising plastic waste management under COVID-19 pandemic: Policy solutions based on redesign and reduction of single-use plastics and personal protective equipment. Sci. Total Environ. 2020, 742, 140565. [Google Scholar] [CrossRef]
- Cabrera, F.C. Eco‐friendly polymer composites: A review of suitable methods for waste management. Polym. Compos. 2021, 42, 2653–2677. [Google Scholar] [CrossRef]
- Sadat-Shojai, M.; Bakhshandeh, G.-R. Recycling of PVC wastes. Polym. Degrad. Stab. 2011, 96, 404–415. [Google Scholar] [CrossRef]
- Alshahri, S.; Alsuhybani, M.; Alosime, E.; Almurayshid, M.; Alrwais, A.; Alotaibi, S. LDPE/Bismuth Oxide Nanocomposite: Preparation, Characterization and Application in X-ray Shielding. Polymers 2021, 13, 3081. [Google Scholar] [CrossRef]
- Lai, M.-F.; Huang, C.-H.; Lou, C.-W.; Wei, C.-Y.; Lin, J.-H. Multi-walled Carbon Nanotubes/Polypropylene-based Coating Layer on the Composite Metal Filaments: Characteristic Evaluations and Radiation-shielded Fabric. Fibers Polym. 2022, 23, 768–774. [Google Scholar] [CrossRef]
- Aral, N.; Duch, M.A.; Nergis, F.B.; Candan, C. The effect of tungsten particle sizes on X-ray attenuation properties. Radiat. Phys. Chem. 2021, 187, 109586. [Google Scholar] [CrossRef]
- Sabir, Z.; Ayub, A.; Guirao, J.L.G.; Bhatti, S.; Shah, S.Z.H. The Effects of Activation Energy and Thermophoretic Diffusion of Nanoparticles on Steady Micropolar Fluid along with Brownian Motion. Adv. Mater. Sci. Eng. 2020, 2020, 1–12. [Google Scholar] [CrossRef]
- Malekzadeh, R.; Mehnati, P.; Sooteh, M.Y.; Mesbahi, A. Influence of the size of nano- and microparticles and photon energy on mass attenuation coefficients of bismuth–silicon shields in diagnostic radiology. Radiol. Phys. Technol. 2019, 12, 325–334. [Google Scholar] [CrossRef]
- Lopresti, M.; Palin, L.; Alberto, G.; Cantamessa, S.; Milanesio, M. Epoxy resins composites for X-ray shielding materials additivated by coated barium sulfate with improved dispersibility. Mater. Today Commun. 2020, 26, 101888. [Google Scholar] [CrossRef]
mmPb | Transmission Dose | 60 kVp | 80 kVp | 100 kVp | 120 kVp | ||||
---|---|---|---|---|---|---|---|---|---|
Non | Lead | Non | Lead | Non | Lead | Non | Lead | ||
0.1 | Dose (mSv) | 0.342 | 0.0082 | 0.871 | 0.074 | 1.401 | 0.151 | 1.721 | 0.251 |
Shielding rate (%) | - | 97.6 | - | 91.5 | - | 89.2 | - | 85.4 | |
0.2 | Dose (mSv) | 0.342 | 0.0021 | 0.871 | 0.034 | 1.401 | 0.086 | 1.721 | 0.145 |
Shielding rate (%) | - | 99.4 | - | 96.1 | - | 93.9 | - | 91.6 | |
0.3 | Dose (mSv) | 0.342 | 0.00009 | 0.871 | 0.026 | 1.401 | 0.061 | 1.721 | 0.109 |
Shielding rate (%) | - | 99.9 | - | 97.01 | - | 95.64 | - | 93.66 |
SF Thickness (mm) | Transmission Dose | 60 kVp | 80 kVp | 100 kVp | 120 kVp | ||||
---|---|---|---|---|---|---|---|---|---|
Non | SF | Non | SF | Non | SF | Non | SF | ||
3 | Dose (mSv) | 0.342 | 0.083 | 0.871 | 0.249 | 1.401 | 0.445 | 1.721 | 0.601 |
Shielding rate (%) | - | 75.73 | - | 71.41 | - | 68.23 | - | 65.07 | |
Lead equivalent | - | 0.078 | - | 0.078 | - | 0.076 | - | 0.076 | |
6 | Dose (mSv) | 0.342 | 0.054 | 0.871 | 0.221 | 1.401 | 0.413 | 1.721 | 0.624 |
Shielding rate (%) | - | 84.21 | - | 74.6 | - | 70.5 | - | 63.7 | |
Lead equivalent | - | 0.169 | - | 0.155 | - | 0.150 | - | 0.139 | |
9 | Dose (mSv) | 0.342 | 0.006 | 0.871 | 0.066 | 1.401 | 0.251 | 1.721 | 0.371 |
Shielding rate (%) | - | 98.2 | - | 92.4 | - | 82.08 | - | 78.4 | |
Lead equivalent | - | 0.198 | - | 0.192 | - | 0.175 | - | 0.171 |
BaSO4 (wt%) | Transmission Dose | 60 kVp | 80 kVp | 100 kVp | 120 kVp | ||||
---|---|---|---|---|---|---|---|---|---|
Non | SF | Non | SF | Non | SF | Non | SF | ||
30 | Dose (mSv) | 0.342 | 0.133 | 0.871 | 0.398 | 1.401 | 0.815 | 1.721 | 1.059 |
Shielding rate (%) | - | 61.1 | - | 54.3 | - | 41.8 | - | 38.4 | |
Lead equivalent | - | 0.063 | - | 0.059 | - | 0.047 | - | 0.045 | |
50 | Dose (mSv) | 0.342 | 0.083 | 0.871 | 0.249 | 1.401 | 0.445 | 1.721 | 0.601 |
Shielding rate (%) | - | 75.73 | - | 71.41 | - | 68.23 | - | 65.07 | |
Lead equivalent | - | 0.078 | - | 0.078 | - | 0.076 | - | 0.076 |
Density (g/cm3) | Thermal Linear Expansion Coefficient | Tensile Modulus (MPa) | |
---|---|---|---|
Shielding Film | 14.93 | ≈2 × 10−4 | 180 ± 0.5 |
Lead | 11.34 | ≈29 × 10−6 | 17–18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-C. Preparation and Performance Evaluation of X-ray-Shielding Barium Sulfate Film for Medical Diagnosis Using PET Recycling and Multi-Carrier Principles. Coatings 2022, 12, 973. https://doi.org/10.3390/coatings12070973
Kim S-C. Preparation and Performance Evaluation of X-ray-Shielding Barium Sulfate Film for Medical Diagnosis Using PET Recycling and Multi-Carrier Principles. Coatings. 2022; 12(7):973. https://doi.org/10.3390/coatings12070973
Chicago/Turabian StyleKim, Seon-Chil. 2022. "Preparation and Performance Evaluation of X-ray-Shielding Barium Sulfate Film for Medical Diagnosis Using PET Recycling and Multi-Carrier Principles" Coatings 12, no. 7: 973. https://doi.org/10.3390/coatings12070973
APA StyleKim, S. -C. (2022). Preparation and Performance Evaluation of X-ray-Shielding Barium Sulfate Film for Medical Diagnosis Using PET Recycling and Multi-Carrier Principles. Coatings, 12(7), 973. https://doi.org/10.3390/coatings12070973