Synergistic Action of Reactive Plasma Particles and UV Radiation to Inactivate Staphylococcus Aureus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Microorganism Decontamination System
2.3. Preparation of Bacterial Inoculum
2.4. Bacterial Enumeration
2.5. Statistical Analysis
3. Results
3.1. Analysis of Plasma Parameters
3.2. Antimicrobial Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Niemira, B.A. Cold Plasma Decontamination of Foods. Annu. Rev. Food Sci. Technol. 2012, 3, 125–142. [Google Scholar] [CrossRef]
- Gas Plasma Sterilization in Microbiology: Theory, Applications, Pitfalls and New Perspectives; Caister Academic Press: Norfolk, UK, 2016; ISBN 978-1-910190-25-8.
- Dobrynin, D.; Friedman, G.; Fridman, A.; Starikovskiy, A. Inactivation of Bacteria Using Dc Corona Discharge: Role of Ions and Humidity. New J. Phys. 2011, 13, 103033. [Google Scholar] [CrossRef]
- Eto, H.; Ono, Y.; Ogino, A.; Nagatsu, M. Low-Temperature Sterilization of Wrapped Materials Using Flexible Sheet-Type Dielectric Barrier Discharge. Appl. Phys. Lett. 2008, 93, 221502. [Google Scholar] [CrossRef]
- Rossi, F.; Kylián, O.; Rauscher, H.; Gilliland, D.; Sirghi, L. Use of a Low-Pressure Plasma Discharge for the Decontamination and Sterilization of Medical Devices. Pure Appl. Chem. 2008, 80, 1939–1951. [Google Scholar] [CrossRef]
- Stapelmann, K.; Fiebrandt, M.; Raguse, M.; Awakowicz, P.; Reitz, G.; Moeller, R. Utilization of Low-Pressure Plasma to Inactivate Bacterial Spores on Stainless Steel Screws. Astrobiology 2013, 13, 597–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shintani, H.; Sakudo, A.; Burke, P.; McDONNELL, G. Gas Plasma Sterilization of Microorganisms and Mechanisms of Action. Exp. Ther. Med. 2010, 1, 731–738. [Google Scholar] [CrossRef] [Green Version]
- Park, J.Y.; Park, S.; Choe, W.; Yong, H.I.; Jo, C.; Kim, K. Plasma-Functionalized Solution: A Potent Antimicrobial Agent for Biomedical Applications from Antibacterial Therapeutics to Biomaterial Surface Engineering. ACS Appl. Mater. Interfaces 2017, 9, 43470–43477. [Google Scholar] [CrossRef] [PubMed]
- Ikawa, S.; Tani, A.; Nakashima, Y.; Kitano, K. Physicochemical Properties of Bactericidal Plasma-Treated Water. J. Phys. D Appl. Phys. 2016, 49, 425401. [Google Scholar] [CrossRef]
- Vandervoort, K.G.; Brelles-Mariño, G. Plasma-Mediated Inactivation of Pseudomonas Aeruginosa Biofilms Grown on Borosilicate Surfaces under Continuous Culture System. PLoS ONE 2014, 9, e108512. [Google Scholar] [CrossRef]
- Sakudo, A.; Yagyu, Y.; Onodera, T. Disinfection and Sterilization Using Plasma Technology: Fundamentals and Future Perspectives for Biological Applications. Int. J. Mol. Sci. 2019, 20, 5216. [Google Scholar] [CrossRef] [Green Version]
- Neogi, S. Inactivation Characteristics of Bacteria in Capacitively Coupled Argon Plasma. IEEE Trans. Plasma Sci. 2009, 37, 2347–2352. [Google Scholar] [CrossRef]
- Soušková, H.; Scholtz, V.; Julák, J.; Savická, D. The fungal spores survival under the low-temperature plasma. In Plasma for Bio-Decontamination, Medicine and Food Security (NATO Science for Peace and Security Series A: Chemistry and Biology); Machala, Z., Hensel, K., Akishev, Y., Eds.; Springer: New York, NY, USA, 2012; pp. 57–66. [Google Scholar]
- Fridman, A. Plasma Chemistry; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Jacobs, P.; Kowatsch, R. Sterrad Sterilization System: A new technology for instrument sterilization. Endosc. Surg. Allied Technol. 1993, 1, 57–58. [Google Scholar]
- Vassallo, E.; Pedroni, M.; Silvetti, T.; Morandi, S.; Brasca, M. Inactivation of Staphylococcus Aureus by the Synergistic Action of Charged and Reactive Plasma Particles. Plasma Sci. Technol. 2020, 22, 085504. [Google Scholar] [CrossRef]
- Klein, S.; Hannesen, J.; Zanger, P.; Heeg, K.; Boutin, S.; Nurjadi, D. Entry of Panton–Valentine Leukocidin-Positive Methicillin-Resistant Staphylococcus Aureus into the Hospital: Prevalence and Population Structure in Heidelberg, Germany 2015–2018. Sci. Rep. 2020, 10, 13243. [Google Scholar] [CrossRef]
- UNI EN ISO ISO14937:2009; Sterilization of Health Care Products—General Requirements for Characterization of Sterilizing Agent and the Development, Validation and Routine Control of a Sterilization Process for Medical Devices. International Organization for Standardization: Geneva, Switzerland, 2009.
- Raballand, V.; Benedikt, J.; Wunderlich, J.; von Keudell, A. Inactivation of Bacillus Atrophaeus and of Aspergillus Niger Using Beams of Argon Ions, of Oxygen Molecules and of Oxygen Atoms. J. Phys. D Appl. Phys. 2008, 41, 115207. [Google Scholar] [CrossRef]
- Privat-Maldonado, A.; O’Connell, D.; Welch, E.; Vann, R.; van der Woude, M.W. Spatial Dependence of DNA Damage in Bacteria Due to Low-Temperature Plasma Application as Assessed at the Single Cell Level. Sci. Rep. 2016, 6, 35646. [Google Scholar] [CrossRef] [Green Version]
- Rossi, F.; Kylián, O.; Hasiwa, M. Decontamination of Surfaces by Low Pressure Plasma Discharges. Plasma Process. Polym. 2006, 3, 431–442. [Google Scholar] [CrossRef]
- Stapelmann, K.; Kylián, O.; Denis, B.; Rossi, F. On the Application of Inductively Coupled Plasma Discharges Sustained in Ar/O 2 /N 2 Ternary Mixture for Sterilization and Decontamination of Medical Instruments. J. Phys. D Appl. Phys. 2008, 41, 192005. [Google Scholar] [CrossRef]
- Kylián, O.; Rossi, F. Sterilization and Decontamination of Medical Instruments by Low-Pressure Plasma Discharges: Application of Ar/O 2 /N 2 Ternary Mixture. J. Phys. D Appl. Phys. 2009, 42, 085207. [Google Scholar] [CrossRef]
- Kylián, O.; Denis, B.; Stapelmann, K.; Ruiz, A.; Rauscher, H.; Rossi, F. Characterization of a Low-Pressure Inductively Coupled Plasma Discharge Sustained in Ar/O2/N2 Ternary Mixtures and Evaluation of Its Effect on Erosion of Biological Samples. Plasma Processes Polym. 2011, 8, 1137–1145. [Google Scholar] [CrossRef]
- Koenig, H.R.; Maissel, L.I. Application of RF Discharges to Sputtering. IBM J. Res. Dev. 1970, 14, 168–171. [Google Scholar] [CrossRef]
- Zaplotnik, R.; Vesel, A.; Mozetic, M. A Fiber Optic Catalytic Sensor for Neutral Atom Measurements in Oxygen Plasma. Sensors 2012, 12, 3857–3867. [Google Scholar] [CrossRef]
- Lazović, S.; Puač, N.; Spasić, K.; Malović, G.; Cvelbar, U.; Mozetič, M.; Radetić, M.; Petrović, Z.L. Plasma Properties in a Large-Volume, Cylindrical and Asymmetric Radio-Frequency Capacitively Coupled Industrial-Prototype Reactor. J. Phys. D Appl. Phys. 2013, 46, 075201. [Google Scholar] [CrossRef]
- Primc, G.; Mozetič, M. Neutral Reactive Gaseous Species in Reactors Suitable for Plasma Surface Engineering. Surf. Coat. Technol. 2019, 376, 15–20. [Google Scholar] [CrossRef]
- Kamenetskikh, A.; Gavrilov, N.; Krivoshapko, S.; Tretnikov, P. Application of the Catalytic Probe Method for Measuring the Concentration of Oxygen Atoms in Ar/O2 Plasma of a Low-Pressure Arc. Plasma Sources Sci. Technol. 2021, 30, 015004. [Google Scholar] [CrossRef]
- Morandi, S.; Brasca, M.; Andrighetto, C.; Lombardi, A.; Lodi, R. Phenotypic and genotypic characterization of Staphylococcus aureus strains from Italian dairy products. Int. J. Microbiol. 2009, 2009, 501362. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.; Austin, J.M.; Glumac, N.G.; Massa, L. NO and OH Spectroscopic Vibrational Temperature Measurements in a Post-Shock Relaxation Region. AIAA J. 2010, 48, 1434–1443. [Google Scholar] [CrossRef] [Green Version]
- Khan, F.U.; Rehman, N.U.; Naseer, S.; Naveed, M.A.; Qayyum, A.; Khattak, N.A.D.; Zakaullah, M. Diagnostic of 13.56 MHz RF Sustained Ar–N 2 Plasma by Optical Emission Spectroscopy. Eur. Phys. J. Appl. Phys. 2009, 45, 11002. [Google Scholar] [CrossRef]
- Yuan, Q.; Ren, P.; Liu, S.; Wang, J.; Yin, G. The Optical Emission Spectroscopy of Nitrogen Plasma Driven by the 94.92 MHz/13.56 MHz Dual-Frequency. Phys. Lett. A 2020, 384, 126367. [Google Scholar] [CrossRef]
- Pearse, R.W.B.; Gaydon, A.G. Identification of Molecular Spectra, 4th ed.; Chapman and Hall: London, UK; Wiley: New York, NY, USA, 1976. [Google Scholar]
- Pintassilgo, C.D.; Kutasi, K.; Loureiro, J. Modelling of a Low-Pressure N 2 –O 2 Discharge and Post-Discharge Reactor for Plasma Sterilization. Plasma Sources Sci. Technol. 2007, 16, S115–S122. [Google Scholar] [CrossRef] [Green Version]
- Bjelland, S. Mutagenicity, Toxicity and Repair of DNA Base Damage Induced by Oxidation. Mutat. Res./Fundam. Mol. Mech. Mutagenesis 2003, 531, 37–80. [Google Scholar] [CrossRef] [PubMed]
- Rhee, J.K.; Kim, D.B.; Moon, S.Y.; Choe, W. Change of the Argon-Based Atmospheric Pressure Large Area Plasma Characteristics by the Helium and Oxygen Gas Mixing. Thin Solid Film. 2007, 515, 4909–4912. [Google Scholar] [CrossRef]
- Cvelbar, U.; Vujoševič, D.; Vratnica, Z.; Mozetič, M. The Influence of Substrate Material on Bacteria Sterilization in an Oxygen Plasma Glow Discharge. J. Phys. D Appl. Phys. 2006, 39, 3487–3493. [Google Scholar] [CrossRef]
- Pflug, I.J.; Holkomb, G.R.; Gómez, M.M. Principles of the Thermal Destruction of Microorganisms. In Disinfection, Sterilization, and Preservation; Block, S.S., Ed.; Lippincott Williams Wilkins: Philadelphia, PA, USA, 2001. [Google Scholar]
- Pijls, B.G.; Sanders, I.M.J.G.; Kuijper, E.J.; Nelissen, R.G.H.H. Synergy between Induction Heating, Antibiotics, and N -Acetylcysteine Eradicates Staphylococcus Aureus from Biofilm. Int. J. Hyperth. 2020, 37, 130–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohm, D.; Burhop, E.H.S.; Massey, H.S.W. The Use of Probes for Plasma Exploration in Strong Magnetic Fields. In Guthrie A and Waker1ing R K The Characteristics of Electrical Discharges in Magnetic Fields; McGraw-Hill: New York, NY, USA, 1949. [Google Scholar]
- Weltmann, K.D.; Fricke, K.; Stieber, M.; Brandenburg, R.; von Woedtke, T.; Schnabel, U. New nonthermal atmospheric pressure plasma sources for decontamination of human extremities. IEEE Trans. Plasma Sci. 2012, 40, 2963–2969. [Google Scholar] [CrossRef]
- Mai-Prochnow, A.; Clauson, M.; Hong, J.; Murphy, A.B. Gram positive and Gram-negative bacteria differ in their sensitivity to cold plasma. Sci. Rep. 2016, 6, 38610. [Google Scholar] [CrossRef] [Green Version]
- Bourke, P.; Ziuzina, D.; Han, L.; Cullen, P.J.; Gilmore, B.F. Microbiological interactions with cold plasma. J. Appl. Microbiol. 2017, 123, 308–324. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Chang, X.; Tei, R.; Nagatsu, M. Effect of excited nitrogen atoms on inactivation of spore-forming microorganisms in low pressure N2/O2 surface-wave plasma. J. Phys. D Appl. Phys. 2016, 49, 235205. [Google Scholar] [CrossRef]
- Lerouge, S.; Wertheimer, M.R.; Yahia, L. Plasma Sterilization: A Review of Parameters, Mechanisms, and Limitations. Plasmas Polym. 2001, 6, 175–188. [Google Scholar] [CrossRef]
- | Ar/O2 Binary Mixture [13] | Ar/O2/N2 Ternary Mixture |
---|---|---|
RF power (W) | 100–250 | 100–250 |
Power density (W/cm2) | 0.3–0.8 | 0.3–0.8 |
Process pressure (Pa) | 20 | 20 |
Total gas flow (sccm) | 30 | 30 |
Ar/O2 ratio | 10 | 8 |
Process time (min) | 4 | 4 |
Nitrogen (%) | 0 | 0–30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vassallo, E.; Pedroni, M.; Aloisio, M.; Silvetti, T.; Morandi, S.; Brasca, M. Synergistic Action of Reactive Plasma Particles and UV Radiation to Inactivate Staphylococcus Aureus. Coatings 2022, 12, 1105. https://doi.org/10.3390/coatings12081105
Vassallo E, Pedroni M, Aloisio M, Silvetti T, Morandi S, Brasca M. Synergistic Action of Reactive Plasma Particles and UV Radiation to Inactivate Staphylococcus Aureus. Coatings. 2022; 12(8):1105. https://doi.org/10.3390/coatings12081105
Chicago/Turabian StyleVassallo, Espedito, Matteo Pedroni, Marco Aloisio, Tiziana Silvetti, Stefano Morandi, and Milena Brasca. 2022. "Synergistic Action of Reactive Plasma Particles and UV Radiation to Inactivate Staphylococcus Aureus" Coatings 12, no. 8: 1105. https://doi.org/10.3390/coatings12081105
APA StyleVassallo, E., Pedroni, M., Aloisio, M., Silvetti, T., Morandi, S., & Brasca, M. (2022). Synergistic Action of Reactive Plasma Particles and UV Radiation to Inactivate Staphylococcus Aureus. Coatings, 12(8), 1105. https://doi.org/10.3390/coatings12081105