Role of Materials Chemistry on Transparent Conductivity of Amorphous Nb-Doped SnO2 Thin Films Prepared by Remote Plasma Deposition
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Methods
2.2. Material Characterization
3. Results and Discussion
3.1. Characterization of Structure and Morphology
3.2. Optical and Electrical Properties
3.3. XPS Analysis
3.4. Fluorescence Spectroscopy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anaraki, E.H.; Kermanpur, A.; Mayer, M.T.; Steier, L.; Ahmed, T.; Turren-Cruz, S.-H.; Seo, J.; Luo, J.; Zakeeruddin, S.M.; Tress, W.R. Low-temperature Nb-doped SnO2 electron-selective contact yields over 20% efficiency in planar perovskite solar cells. ACS Energy Lett. 2018, 3, 773–778. [Google Scholar] [CrossRef]
- Ramarajan, R.; Kovendhan, M.; Thangaraju, K.; Joseph, D.P. Indium-free large area Nb-doped SnO2 thin film as an alternative transparent conducting electrode. Ceram. Int. 2020, 46, 12224–12231. [Google Scholar] [CrossRef]
- Dong, L.; Zhu, G.; Xu, H.; Jiang, X.; Zhang, X.; Zhao, Y.; Yan, D.; Yuan, L.; Yu, A. Preparation of indium tin oxide (ITO) thin film with (400) preferred orientation by sol–gel spin coating method. J. Mater. Sci. Mater. Electron. 2019, 30, 8047–8054. [Google Scholar] [CrossRef]
- Thomas, B.; Skariah, B. Spray deposited Mg-doped SnO2 thin film LPG sensor: XPS and EDX analysis in relation to deposition temperature and doping. J. Alloys Compd. 2015, 625, 231–240. [Google Scholar] [CrossRef]
- Guo, R.; Zhao, Y.; Zhang, Y.; Deng, Q.; Shen, Y.; Zhang, W.; Shao, G. Significant performance enhancement of all-inorganic CsPbBr3 perovskite solar cells enabled by Nb-doped SnO2 as effective electron transport layer. Energy Environ. Mater. 2021, 4, 671–680. [Google Scholar] [CrossRef]
- Song, J.; Xu, X.; Wu, J.; Lan, Z. Low-temperature solution-processing high quality Nb-doped SnO2 nanocrystals-based electron transport layers for efficient planar perovskite solar cells. Funct. Mater. Lett. 2019, 12, 1850091. [Google Scholar] [CrossRef] [Green Version]
- Hirano, T.; Tsuboi, T.; Tanabe, E.; Ogi, T. In-situ flame deposition of Pt catalysts on Nb-doped SnO2 nanoparticles. J. Alloys Compd. 2022, 898, 162749. [Google Scholar] [CrossRef]
- Fu, Q.; Halck, N.B.; Hansen, H.A.; Lastra, J.M.G.; Vegge, T. Computational study of Nb-doped-SnO2/Pt interfaces: Dopant segregation, electronic transport, and catalytic properties. Chem. Mater. 2017, 29, 1641–1649. [Google Scholar] [CrossRef]
- Zhang, G.; Qin, G.; Yu, G.; Hu, Q.; Fu, H.; Shao, C. Ab initio investigation on a promising transparent conductive oxide, Nb:SnO2. Thin Solid Films 2012, 520, 5965–5970. [Google Scholar] [CrossRef]
- Seo, Y.J.; Kim, G.W.; Sung, C.H.; Anwar, M.S.; Lee, C.G.; Koo, B.H. Characterization of transparent and conductive electrodes of Nb-doped SnO2 thin film by pulsed laser deposition. Curr. Appl. Phys. 2011, 11, S310–S313. [Google Scholar] [CrossRef]
- Song, A.; Levine, I.; van de Krol, R.; Dittrich, T.; Berglund, S.P. Revealing the relationship between photoelectrochemical performance and interface hole trapping in CuBi2O4 heterojunction photoelectrodes. Chem. Sci. 2020, 11, 11195–11204. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Steier, L.; Son, M.-K.; Schreier, M.; Mayer, M.T.; Grätzel, M. Cu2O nanowire photocathodes for efficient and durable solar water splitting. Nano Lett. 2016, 16, 1848–1857. [Google Scholar] [CrossRef] [PubMed]
- Kakinuma, K.; Chino, Y.; Senoo, Y.; Uchida, M.; Kamino, T.; Uchida, H.; Deki, S.; Watanabe, M. Characterization of Pt catalysts on Nb-doped and Sb-doped SnO2–δ support materials with aggregated structure by rotating disk electrode and fuel cell measurements. Electrochim. Acta 2013, 110, 316–324. [Google Scholar] [CrossRef]
- Senoo, Y.; Kakinuma, K.; Uchida, M.; Uchida, H.; Deki, S.; Watanabe, M. Improvements in electrical and electrochemical properties of Nb-doped SnO2−δ supports for fuel cell cathodes due to aggregation and Pt loading. RSC Adv. 2014, 4, 32180–32188. [Google Scholar] [CrossRef]
- Savych, I.; Subianto, S.; Nabil, Y.; Cavaliere, S.; Jones, D.; Rozière, J. Negligible degradation upon in situ voltage cycling of a PEMFC using an electrospun niobium-doped tin oxide supported Pt cathode. Phys. Chem. Chem. Phys. 2015, 17, 16970–16976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefik, M.; Cornuz, M.; Mathews, N.; Hisatomi, T.; Mhaisalkar, S.; Grätzel, M. Transparent, Conducting Nb:SnO2 for Host–Guest Photoelectrochemistry. Nano Lett. 2012, 12, 5431–5435. [Google Scholar] [CrossRef] [PubMed]
- Song, A.; Plate, P.; Chemseddine, A.; Wang, F.; Abdi, F.F.; Wollgarten, M.; van de Krol, R.; Berglund, S.P. Cu:NiO as a hole-selective back contact to improve the photoelectrochemical performance of CuBi2O4 thin film photocathodes. J. Mater. Chem. A 2019, 7, 9183–9194. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Tsubota, T.; Mooij, L.P.A.; van de Krol, R. Highly Improved Quantum Efficiencies for Thin Film BiVO4 Photoanodes. J. Phys. Chem. C 2011, 115, 17594–17598. [Google Scholar] [CrossRef]
- Mientus, R.; Weise, M.; Seeger, S.; Heller, R.; Ellmer, K. Electrical and Optical Properties of Amorphous SnO2:Ta Films, Prepared by DC and RF Magnetron Sputtering: A Systematic Study of the Influence of the Type of the Reactive Gas. Coatings 2020, 10, 204. [Google Scholar] [CrossRef] [Green Version]
- Díaz, E.C.Y.; Camacho, J.M.; Duarte-Moller, A.; Castro-Rodríguez, R.; Bartolo-Pérez, P. Influence of the oxygen pressure on the physical properties of the pulsed-laser deposited Te doped SnO2 thin films. J. Alloys Compd. 2010, 508, 342–347. [Google Scholar] [CrossRef]
- Wang, W.; Feng, X.; Luan, C.; Ma, J. Effect of Nb doping on structural and electrical properties of homoepitaxial rutile TiO2:Nb films. Ceram. Int. 2018, 44, 2432–2435. [Google Scholar] [CrossRef]
- Kamisaka, H.; Hitosugi, T.; Suenaga, T.; Hasegawa, T.; Yamashita, K. Density functional theory based first-principle calculation of Nb-doped anatase TiO2 and its interactions with oxygen vacancies and interstitial oxygen. J. Chem. Phys. 2009, 131, 034702. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Song, K.; Lu, L.; Deng, Q.; Xia, X.; Shao, G. Limitation and extrapolation correction of the GGA + U formalism: A case study of Nb-doped anatase TiO2. J. Mater. Chem. C 2013, 1, 3736–3746. [Google Scholar] [CrossRef]
- Rizzato, A.P.; Santilli, C.V.; Pulcinelli, S.H.; Messaddeq, Y.; Hammer, P. XPS Study of the Corrosion Protection of Fluorozirconate Glasses Dip-Coated with SnO2 Transparent Thin Films. J. Sol-Gel Sci. Technol. 2004, 32, 155–160. [Google Scholar] [CrossRef]
- Szuber, J.; Czempik, G.; Larciprete, R.; Koziej, D.; Adamowicz, B. XPS study of the L-CVD deposited SnO2 thin films exposed to oxygen and hydrogen. Thin Solid Films 2001, 391, 198–203. [Google Scholar] [CrossRef]
- Song, A.; Chemseddine, A.; Ahmet, I.Y.; Bogdanoff, P.; Friedrich, D.; Abdi, F.F.; Berglund, S.P.; van de Krol, R. Evaluation of Copper Vanadate (β-Cu2V2O7) as a Photoanode Material for Photoelectrochemical Water Oxidation. Chem. Mater. 2020, 32, 2408–2419. [Google Scholar] [CrossRef]
- Song, A.; Berglund, S.P.; Chemseddine, A.; Friedrich, D.; Abdi, F.F.; van de Krol, R. Elucidating the optical, electronic, and photoelectrochemical properties of p-type copper vanadate (p-Cu5V2O10) photocathodes. J. Mater. Chem. A 2020, 8, 12538–12547. [Google Scholar] [CrossRef]
- Wei, S.; Wang, C.; Long, X.; Wang, T.; Wang, P.; Zhang, M.; Li, S.; Ma, J.; Jin, J.; Wu, L. A oxygen vacancy-modulated homojunction structural CuBi2O4 photocathodes for efficient solar water reduction. Nanoscale 2020, 12, 15193–15200. [Google Scholar] [CrossRef] [PubMed]
- Fondell, M.; Gorgoi, M.; Boman, M.; Lindblad, A. An HAXPES study of Sn, SnS, SnO and SnO2. J. Electron Spectrosc. Relat. Phenom. 2014, 195, 195–199. [Google Scholar] [CrossRef] [Green Version]
- Santara, B.; Giri, P.K.; Imakita, K.; Fujii, M. Evidence of oxygen vacancy induced room temperature ferromagnetism in solvothermally synthesized undoped TiO2 nanoribbons. Nanoscale 2013, 5, 5476–5488. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.K.; Bhattacharya, R.; Ray, S.K.; Manna, I. Influence of deposition temperature on structure and morphology of nanostructured SnO2 films synthesized by pulsed laser deposition. Mater. Lett. 2011, 65, 146–149. [Google Scholar] [CrossRef]
- Yu, S.; Li, L.; Sun, Z.; Zheng, H.; Dong, H.; Xu, D.; Zhang, W. Characteristics of Transparent Conducting W-Doped SnO2 Thin Films Prepared by Using the Magnetron Sputtering Method. J. Am. Ceram. Soc. 2015, 98, 1121–1127. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, A.; Wang, Y.; Liu, S.; Wang, Q.; Hu, J. Role of Materials Chemistry on Transparent Conductivity of Amorphous Nb-Doped SnO2 Thin Films Prepared by Remote Plasma Deposition. Coatings 2022, 12, 1111. https://doi.org/10.3390/coatings12081111
Song A, Wang Y, Liu S, Wang Q, Hu J. Role of Materials Chemistry on Transparent Conductivity of Amorphous Nb-Doped SnO2 Thin Films Prepared by Remote Plasma Deposition. Coatings. 2022; 12(8):1111. https://doi.org/10.3390/coatings12081111
Chicago/Turabian StyleSong, Angang, Yiwen Wang, Suxiang Liu, Qinpu Wang, and Junhua Hu. 2022. "Role of Materials Chemistry on Transparent Conductivity of Amorphous Nb-Doped SnO2 Thin Films Prepared by Remote Plasma Deposition" Coatings 12, no. 8: 1111. https://doi.org/10.3390/coatings12081111
APA StyleSong, A., Wang, Y., Liu, S., Wang, Q., & Hu, J. (2022). Role of Materials Chemistry on Transparent Conductivity of Amorphous Nb-Doped SnO2 Thin Films Prepared by Remote Plasma Deposition. Coatings, 12(8), 1111. https://doi.org/10.3390/coatings12081111