Surface Characterization of Current Dental Ceramics Using Scanning Electron Microscopic and Atomic Force Microscopic Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement of Surface Roughness
2.2. Scanning Electron Microscopy (SEM) Observation
2.3. Fourier-Transform Infrared Spectroscopy with Attenuated Total Reflectance Sensor (FT—IR-ATR) Measurements
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Denry, I.; Kelly, J.R. Emerging Ceramic-based Materials for Dentistry. J. Dent. Res. 2014, 93, 1235–1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denry, I.; Holloway, J. Ceramics for dental applications: A review. Materials 2010, 3, 351–368. [Google Scholar] [CrossRef] [Green Version]
- Daou, E.E.; Al-Gotmeh, M. The Zirconia Restoration Properties: A Versatile Restorative Material. Dentistry 2014, 4, 1000219. [Google Scholar] [CrossRef] [Green Version]
- Warreth, A.; Elkareimi, Y. All-ceramic restorations: A review of the literature. Saudi Dent. J. 2020, 32, 365–372. [Google Scholar] [CrossRef]
- Mörmann, W. The evolution of the CEREC system. J. Am. Dent. Assoc. 2006, 137, 7S–13S. [Google Scholar] [CrossRef]
- Sumi, T.; Braian, M.; Shimada, A.; Shibata, N.; Takeshita, K.; Vandeweghe, S.; Coelho, P.G.; Wennerberg, A.; Jimbo, R. Characteristics of implant-CAD/CAM abutment connections of two different internal connection systems. J. Oral Rehabil. 2012, 39, 391–398. [Google Scholar] [CrossRef]
- Azar, B.; Eckert, S.; Kunkela, J.; Ingr, T.; Mounajjed, R. The marginal fit of lithium disilicate crowns: Press vs. CAD/CAM. Braz. Oral Res. 2018, 32, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Bebsh, M.; Haimeur, A.; França, R. The Effect of Different Surface Treatments on the Micromorphology and the Roughness of Four Dental CAD/CAM Lithium Silicate-Based Glass-Ceramics. Ceramics 2021, 4, 34. [Google Scholar] [CrossRef]
- Zarone, F.; Ruggiero, G.; Leone, R.; Breschi, L.; Leuci, S.; Sorrentino, R. Zirconia-reinforced lithium silicate (ZLS) mechanical and biological properties: A literature review. J. Dent. 2021, 109, 103661. [Google Scholar] [CrossRef]
- Bączkowski, B.; Ziębowicz, A.; Ziębowicz, B.; Wojtyńska, E.; Mierzwińska-Nastalska, E. Assessment of the microhardness and roughness of zirconium oxide used in the production of individual ceramic implant abutments. Protet. Stomatol. 2020, 70, 33–42. [Google Scholar] [CrossRef]
- Fu, L.; Engqvist, H.; Xia, W. Glass-ceramics in dentistry: A review. Materials 2020, 13, 1049. [Google Scholar] [CrossRef] [Green Version]
- Baltatu, M.S.; Vizureanu, P.; Sandu, A.V.; Munteanu, C.; Istrate, B. Microstructural analysis and tribological behavior of Ti-based alloys with a ceramic layer using the thermal spray method. Coatings 2020, 10, 1216. [Google Scholar] [CrossRef]
- Li, R.W.K.; Chow, T.W.; Matinlinna, J.P. Ceramic dental biomaterials and CAD/CAM technology: State of the art. J. Prosthodont. Res. 2014, 58, 208–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baltatu, M.S.; Vizureanu, P.; Sandu, A.V.; Florido-Suarez, N.; Saceleanu, M.V.; Mirza-Rosca, J.C. New titanium alloys, promising materials for medical devices. Materials 2021, 14, 5934. [Google Scholar] [CrossRef] [PubMed]
- Focsaneanu, S.C.; Vizureanu, P.; Sandu, A.V.; Ciobanu, G.; Baltatu, S.M.; Vlad, D. Experimental study on the influence of zirconia surface preparation on deposition of hydroxyapatite. Rev. Chim. 2019, 70, 2273–2275. [Google Scholar] [CrossRef]
- Shibasaki, P.; Cavalli, V.; Oliveira, M.; Barbosa, J.; Boriollo, M.; Martins, L. Influence Of Surface Treatment On The Physical Properties And Biofilm Formation Of Zirconia-Reinforced Lithium Silicate Ceramics: In Vitro Trial. Int. J. Prosthodont. 2021. [Google Scholar] [CrossRef]
- Özyılmaz, Ö.Y.; Özel, G.S.; Bevek, S.; Ahmet, O. Effects of Glazing Procedures on the Color Stability of Conventional and CAD/CAM Hybrid Ceramics: A Comparative Study. Meandros Med. Dent. J. 2019, 20, 209–219. [Google Scholar] [CrossRef]
- Singh, R.G.; Li, K.C.; Lyons, K.M.; Waddell, J.N. Effect of Two Brands of Glaze Material on the Flexural Strength and Probability of Failure of High Translucent Monolithic Zirconia. Materials 2021, 14, 7022. [Google Scholar] [CrossRef] [PubMed]
- Cattell, M.J.; Chadwick, T.C.; Knowles, J.C.; Clarke, R.L. The development and testing of glaze materials for application to the fit surface of dental ceramic restorations. Dent. Mater. 2009, 25, 431–441. [Google Scholar] [CrossRef]
- Rashid, H. The effect of surface roughness on ceramics used in dentistry: A review of literature. Eur. J. Dent. 2014, 8, 571–579. [Google Scholar] [CrossRef]
- Kowalski, J.; Lapinska, B.; Nissan, J.; Lukomska-Szymanska, M. Factors Influencing Marginal Bone Loss around Dental Implants: A Narrative Review. Coatings 2021, 11, 865. [Google Scholar] [CrossRef]
- Lo Giudice, A.; Ronsivalle, V.; Grippaudo, C.; Lucchese, A.; Muraglie, S.; Lagravère, M.O.; Isola, G. One Step before 3D Printing—Evaluation of Imaging Software Accuracy for 3-Dimensional Analysis of the Mandible: A Comparative Study Using a Surface-to-Surface Matching Technique. Materials 2020, 13, 2798. [Google Scholar] [CrossRef] [PubMed]
- Lo Giudice, A.; Leonardi, R.; Ronsivalle, V.; Allegrini, S.; Lagravère, M.; Marzo, G.; Isola, G. Evaluation of pulp cavity/chamber changes after tooth-borne and bone-borne rapid maxillary expansions: A CBCT study using surface-based superimposition and deviation analysis. Clin. Oral Investig. 2021, 25, 2237–2247. [Google Scholar] [CrossRef] [PubMed]
- Madhyastha, P.S.; Hegde, S.; Srikant, N.; Kotian, R.; Iyer, S.S. Effect of finishing/polishing techniques and time on surface roughness of esthetic restorative materials. Dent. Res. J. 2017, 14, 326–330. [Google Scholar] [CrossRef]
- Fasbinder, D.J.; Neiva, G.F. Surface Evaluation of Polishing Techniques for New Resilient CAD/CAM Restorative Materials. J. Esthet. Restor. Dent. 2016, 28, 56–66. [Google Scholar] [CrossRef]
- Yilmaz, C.; Korkmaz, T.; Demirköprülü, H.; Ergün, G.; Özkan, Y. Color stability of glazed and polished dental porcelains. J. Prosthodont. 2008, 17, 20–24. [Google Scholar] [CrossRef]
- Anusavice, K.J.; Kakar, K.; Ferree, N. Which mechanical and physical testing methods are relevant for predicting the clinical performance of ceramic-based dental prostheses? Clin. Oral Implants Res. 2007, 18, 218–231. [Google Scholar] [CrossRef]
- Heintze, S.D.; Cavalleri, A.; Forjanic, M.; Zellweger, G.; Rousson, V. Wear of ceramic and antagonist—A systematic evaluation of influencing factors in vitro. Dent. Mater. 2008, 24, 433–449. [Google Scholar] [CrossRef]
- Shaikh, M.Q.; Nath, S.D.; Akilan, A.A.; Khanjar, S.; Balla, V.K.; Grant, G.T.; Atre, S.V. Investigation of Patient-Specific Maxillofacial Implant Prototype Development by Metal Fused Filament Fabrication (MF 3) of Ti-6Al-4V. Dent. J. 2021, 9, 109. [Google Scholar] [CrossRef]
- Asiry, M.A.; AlShahrani, I.; Alaqeel, S.M.; Durgesh, B.H.; Ramakrishnaiah, R. Effect of two-step and one-step surface conditioning of glass ceramic on adhesion strength of orthodontic bracket and effect of thermo-cycling on adhesion strength. J. Mech. Behav. Biomed. Mater. 2018, 84, 22–27. [Google Scholar] [CrossRef]
- Saleeva, L.; Kashapov, R.; Shakirzyanov, F.; Kuznetsov, E.; Kashapov, L.; Smirnova, V.; Kashapov, N.; Saleeva, G.; Sachenkov, O.; Saleev, R. The Effect of Surface Processing on the Shear Strength of Cobalt-Chromium Dental Alloy and Ceramics. Materials 2022, 15, 2987. [Google Scholar] [CrossRef] [PubMed]
- Della Bona, A.; Borba, M.; Benetti, P.; Pecho, O.E.; Alessandretti, R.; Mosele, J.C.; Mores, R.T. Adhesion to Dental Ceramics. Curr. Oral Health Rep. 2014, 1, 232–238. [Google Scholar] [CrossRef] [Green Version]
- Lapinska, B.; Rogowski, J.; Nowak, J.; Nissan, J.; Sokolowski, J.; Lukomska-Szymanska, M. Effect of surface cleaning regimen on glass ceramic bond strength. Molecules 2019, 24, 389. [Google Scholar] [CrossRef] [Green Version]
- Tzanakakis, E.; Kontonasaki, E.; Voyiatzis, G.; Andrikopoulos, K.; Tzoutzas, I. Surface characterization of monolithic zirconia submitted to different surface treatments applying optical interferometry and raman spectrometry. Dent. Mater. J. 2020, 39, 111–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pantić, M.; Mitrović, S.; Babić, M.; Jevremović, D.; Kanjevac, T.; Džunić, D.; Adamović, D. AFM surface roughness and topography analysis of lithium disilicate glass ceramic. Tribol. Ind. 2015, 37, 391–399. [Google Scholar]
- Kaczmarek, K.; Leniart, A.; Lapinska, B.; Skrzypek, S.; Lukomska-Szymanska, M. Selected spectroscopic techniques for surface analysis of dental materials: A narrative review. Materials 2021, 14, 2624. [Google Scholar] [CrossRef]
- Lapinska, B.; Szynkowska, M.I.; Rogowski, J.; Nowak, J.; Sokolowski, G.; Sokolowski, J.; Lukomska-Szymanska, M. Changes in dental ceramic surface structure and their influence on the bond strength to composite material. Przem. Chem. 2017, 96, 370–374. [Google Scholar] [CrossRef]
- Dutra, D.A.M.; Pereira, G.K.R.; Kantorski, K.Z.; Valandro, L.F.; Zanatta, F.B. Does finishing and polishing of Restorative materials affect bacterial adhesion and biofilm formation? a systematic review. Oper. Dent. 2018, 43, 37–52. [Google Scholar] [CrossRef]
- Lapinska, B.; Szynkowska, M.I.; Szczesio, A.; Domarecka, M.; Sokolowski, J.; Lukomska-Szymanska, M. Lithium silicate ceramic surface properties after surface treatment. Przem. Chem. 2017, 96, 391–395. [Google Scholar] [CrossRef]
- Kreve, S.; dos Reis, A.C. Effect of surface properties of ceramic materials on bacterial adhesion: A systematic review. J. Esthet. Restor. Dent. 2022, 34, 461–472. [Google Scholar] [CrossRef]
- Kozmos, M.; Virant, P.; Rojko, F.; Abram, A.; Rudolf, R.; Raspor, P.; Zore, A.; Bohinc, K. Bacterial adhesion of streptococcus mutans to dental material surfaces. Molecules 2021, 26, 1152. [Google Scholar] [CrossRef] [PubMed]
- Lewandowska, M.; Stefaniuk, T.; Pniewski, J. The technique of measurement of intraocular lens surface roughness using atomic force microscopy. Interdiscip. J. Eng. Sci. 2014, 2, 21–25. [Google Scholar]
- Kara, H.B.; Kara, O.; Sayin, G.; Cakan, U.; Ozturk, A.N. Atomic force microscopy investigation of lithium disilicate glass ceramic after various surface treatments. Adv. Appl. Ceram. 2014, 113, 301–306. [Google Scholar] [CrossRef]
- Tholt, B.; Miranda, W.G.; Prioli, R.; Thompson, J.; Oda, M. Surface roughness in ceramics with different finishing techniques using atomic force microscope and profilometer. Oper. Dent. 2006, 31, 442–449. [Google Scholar] [CrossRef] [Green Version]
- Incesu, E.; Yanikoglu, N. Evaluation of the effect of different polishing systems on the surface roughness of dental ceramics. J. Prosthet. Dent. 2020, 124, 100–109. [Google Scholar] [CrossRef]
- Azevedo, V.L.B.; de Castro, E.F.; Bonvent, J.J.; de Andrade, O.S.; Nascimento, F.D.; Giannini, M.; Cavalli, V. Surface treatments on CAD/CAM glass–ceramics: Influence on roughness, topography, and bond strength. J. Esthet. Restor. Dent. 2021, 33, 739–749. [Google Scholar] [CrossRef]
- Dal Piva, A.M.O.; Contreras, L.P.C.; Ribeiro, F.C.; Anami, L.C.; Camargo, S.E.A.; Jorge, A.O.C.; Bottino, M.A. Monolithic ceramics: Effect of finishing techniques on surface properties, bacterial adhesion and cell viability. Oper. Dent. 2018, 43, 315–325. [Google Scholar] [CrossRef]
- Matthias, K.; Helmut, K.; Rudolf, S.J. The all-porcelain, resin-bonded bridge. Quintessence Int. 1991, 22, 257–262. [Google Scholar]
- Contreras, L.P.C.; Dal Piva, A.M.O.; De Camargo Ribeiro, F.; Anami, L.C.; Camargo, S.E.A.; Jorge, A.O.C.; Bottino, M.A. Effects of manufacturing and finishing techniques of feldspathic ceramics on surface topography, biofilm formation, and cell viability for human gingival fibroblasts. Oper. Dent. 2018, 43, 593–601. [Google Scholar] [CrossRef]
- Hjerppe, J.; Rodas, S.; Korvala, J.; Pesonen, P.; Kaisanlahti, A.; Özcan, M.; Suojanen, J.; Reunanen, J. Surface roughness and streptococcus mutans adhesion on metallic and ceramic fixed prosthodontic materials after scaling. Materials 2021, 14, 1027. [Google Scholar] [CrossRef]
- Delvallée, A.; Oulalite, M.; Crouzier, L.; Ducourtieux, S.; Lambeng, N.; Amor, W.; Bouzakher Ghomrasni, N.; Feltin, N.; Viot, A.; Jamet, C. Correlation of AFM/SEM/EDS Images to Discriminate Several Nanoparticle Populations Mixed in Cosmetics. Micros. Today 2021, 29, 46–51. [Google Scholar] [CrossRef]
- Sidhu, G.K.; Kaushik, A.K.; Rana, S.; Bhansali, S.; Kumar, R. Photoluminescence quenching of Zirconia nanoparticle by surface modification. Appl. Surf. Sci. 2015, 334, 216–221. [Google Scholar] [CrossRef]
- Sharma, S.; Cross, S.E.; Hsueh, C.; Wali, R.P.; Stieg, A.Z.; Gimzewski, J.K. Nanocharacterization in Dentistry. Int. J. Mol. Sci. 2010, 11, 2523–2545. [Google Scholar] [CrossRef]
- Orilisi, G.; Tosco, V.; Monterubbianesi, R.; Notarstefano, V.; Özcan, M.; Putignano, A.; Orsini, G. ATR-FTIR, EDS and SEM evaluations of enamel structure after treatment with hydrogen peroxide bleaching agents loaded with nano-hydroxyapatite particles. PeerJ 2021, 9, e10606. [Google Scholar] [CrossRef] [PubMed]
- Dal Piva, A.M.D.O.; Bottino, M.A.; Anami, L.C.; Werner, A.; Kleverlaan, C.J.; Lo Giudice, R.; Famà, F.; da Silva-Concilio, L.R.; Tribst, J.P.M. Toothbrushing Wear Resistance of Stained CAD/CAM Ceramics. Coatings 2021, 11, 224. [Google Scholar] [CrossRef]
- Garza, L.A.; Thompson, G.; Cho, S.H.; Berzins, D.W. Effect of toothbrushing on shade and surface roughness of extrinsically stained pressable ceramics. J. Prosthet. Dent. 2016, 115, 489–494. [Google Scholar] [CrossRef] [Green Version]
Product Name | Acronym Used in Paper | Type of Material | Translucency | Color/ Shade | Manufacturer | LOT Number |
---|---|---|---|---|---|---|
IPS e. max® CAD | LS2 | lithium disilicate glass ceramic | HT | A20/B40 | Ivoclar Vivadent, Schaan, Liechtenstein | X36997 |
Celtra® Duo | ZLS | zirconia-reinforced lithium silicate | HT | A2/C14 | DeguDent GmbH, Hanau-Wolfgang, Germany | 16005937 |
ZIRCONIA | ZrO2 | zirconium oxide | HT | White | Bloomden Bioceramics Co., Ltd., Hunan, China | BL180712001 |
Celtra®Ceram | CC | leucite-reinforced feldspathic ceramic | - | - | DeguDent GmbH, Hanau-Wolfgang, Germany | 18004711 |
IPS e.max® Ceram | IC | fluorapatite veneering ceramic | - | - | Ivoclar Vivadent, Schaan, Liechtenstein | Z00MCX |
IPS Ivocolor® Glaze Paste | IIG | alkali aluminosilicate glass | - | - | Ivoclar Vivadent, Schaan, Liechtenstein | Y10534 |
Samples | Rq [nm] | Ra [nm] | SAD [%] | |||
---|---|---|---|---|---|---|
Area 20 µm × 20 µm | Area 1 µm × 1 µm | Area 20 µm × 20 µm | Area 1 µm × 1 µm | Area 20 µm × 20 µm | Area 1 µm × 1 µm | |
LS2 | 83.0 [73.6–116.0] | 7.0 [4.01–8.2] | 64.0 [52.7–122.45] | 5.6 [3.0–5.7] | 0.62 [0.23–1.09] | 1.46 [1.42–1.48] |
LS2-CC | 10.2 [7.4–17.6] | 1.3 [1.1–1.9] | 6.6 [5.0–11.4] | 0.9 [0.9–1.3] | 0.14 [0.12–0.21] | 0.93 [0.69–1.11] |
LS2-IC | 9.0 [6.7–11.2] | 1.8 [0.8–2.2] | 6.6 [4.5–7.8] | 0.9 [0.5–1.6] | 0.12 [0.09–0.16] | 0.65 [0.55–1.07] |
LS2-IIG | 7.8 [7.3–8.4] | 1.3 [0.9–3.0] | 4.8 [4.1–5.3] | 1.0 [0.5–2.0] | 0.11 [0.08–10] | 0.58 [0.31–8.43] |
ZLS | 268.5 [244.8–316.0] | 16.1 [13.1–28.5] | 213.5 [177.8–250.3] | 12.2 [10.3–20.9] | 11.20 [10.78–15.33] | 11.70 [4.09–12.33] |
ZLS-CC | 8.9 [7.2–12.7] | 1.7 [0.9–3.1] | 5.8 [4.6–7.6] | 1.1 [0.6–2.5] | 0.15 [0.09–0.25] | 0.66 [0.45–1.61] |
ZLS-IC | 15.6 [13.0–44.8] | 2.4 [1.5–3.8] | 10.1 [8.0–18.8] | 1.4 [1.0–2.8] | 0.26 [0.12–0.54] | 0.80 [0.54–1.16] |
ZLS-IIG | 14.8 [11.3–22.5] | 1.0 [0.4–3.5] | 9.1 [8.1–13.9] | 0.8 [0.2–2.6] | 0.30 [0.28–0.54] | 0.39 [0.34–1.34] |
ZrO2 | 154.5 [103.0–270.0] | 26.4 [22.9–30.0] | 119.3 [76.7–219.0] | 20.6 [18.6–23.9] | 7.87 [7.85–10.03] | 8.06 [7.87–8.43] |
ZrO2-CC | 12.1 [ 10.0–17.0] | 1.8 [1.1–3.8] | 9.6 [6.6–10.3] | 1.2 [0.7–2.4] | 0.25 [0.11–0.38] | 1.36 [0.57–1.57] |
ZrO2-IC | 29.1 [20.1–33.2] | 1.0 [0.6–1.6] | 12.7 [10.8–14.4] | 0.6 [0.4–0.9] | 0.69 [0.32–0.78] | 0.72 [0.38–1.36] |
ZrO2-IIG | 1.9 [1.6–4.5] | 0.4 [0.3–1.0] | 1.3 [1.2–3.4] | 0.3 [0.2–0.5] | 0.03 [0.01–0.05] | 0.39 [0.26–0.82] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaczmarek, K.; Konieczny, B.; Siarkiewicz, P.; Leniart, A.; Lukomska-Szymanska, M.; Skrzypek, S.; Lapinska, B. Surface Characterization of Current Dental Ceramics Using Scanning Electron Microscopic and Atomic Force Microscopic Techniques. Coatings 2022, 12, 1122. https://doi.org/10.3390/coatings12081122
Kaczmarek K, Konieczny B, Siarkiewicz P, Leniart A, Lukomska-Szymanska M, Skrzypek S, Lapinska B. Surface Characterization of Current Dental Ceramics Using Scanning Electron Microscopic and Atomic Force Microscopic Techniques. Coatings. 2022; 12(8):1122. https://doi.org/10.3390/coatings12081122
Chicago/Turabian StyleKaczmarek, Katarzyna, Bartlomiej Konieczny, Przemyslaw Siarkiewicz, Andrzej Leniart, Monika Lukomska-Szymanska, Slawomira Skrzypek, and Barbara Lapinska. 2022. "Surface Characterization of Current Dental Ceramics Using Scanning Electron Microscopic and Atomic Force Microscopic Techniques" Coatings 12, no. 8: 1122. https://doi.org/10.3390/coatings12081122
APA StyleKaczmarek, K., Konieczny, B., Siarkiewicz, P., Leniart, A., Lukomska-Szymanska, M., Skrzypek, S., & Lapinska, B. (2022). Surface Characterization of Current Dental Ceramics Using Scanning Electron Microscopic and Atomic Force Microscopic Techniques. Coatings, 12(8), 1122. https://doi.org/10.3390/coatings12081122