Micro/Nanomaterials for Heat Transfer, Energy Storage and Conversion
Funding
Conflicts of Interest
References
- Wang, Z.; Cheng, P. Enhancements of absorption and photothermal conversion of solar energy enabled by surface plasmon resonances in nanoparticles and metamaterials. Int. J. Heat Mass Transf. 2019, 140, 453–482. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Z.M.; Quan, X.; Cheng, P. A numerical study on effects of surrounding medium, material, and geometry of nanoparticles on solar absorption efficiencies. Int. J. Heat Mass Transf. 2018, 116, 825–832. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Z.M.; Quan, X.; Cheng, P. A perfect absorber design using a natural hyperbolic material for harvesting solar energy. Sol. Energy 2018, 159, 329–336. [Google Scholar] [CrossRef]
- Liang, Q.; Yin, Q.; Chen, L.; Wang, Z.; Chen, X. Perfect spectrally selective solar absorber with dielectric filled fishnet tungsten grating for solar energy harvesting. Sol. Energy Mater. Sol. Cells 2020, 215, 110664. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Z.; Duan, G.; Fang, L.; Duan, H. Ultrahigh broadband absorption in metamaterials with electric and magnetic polaritons enabled by multiple materials. Int. J. Heat Mass Transf. 2022, 185, 122355. [Google Scholar] [CrossRef]
- Liu, Z.; Duan, G.; Duan, H.; Wang, Z. Nearly perfect absorption of solar energy by coherent of electric and magnetic polaritons. Sol. Energy Mater. Sol. Cells 2022, 240, 111688. [Google Scholar] [CrossRef]
- Wang, Z.; Quan, X.; Zhang, Z.; Cheng, P. Optical absorption of carbon-gold core-shell nanoparticles. J. Quant. Spectrosc. Radiat. Transf. 2018, 205, 291–298. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, P.; Qi, G.; Zhang, Z.M.; Cheng, P. An experimental study of a nearly perfect absorber made from a natural hyperbolic material for harvesting solar energy. J. Appl. Phys. 2020, 127, 233102. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, Y.; Zhao, J.; Deng, Y.; Wang, Z.; Cheng, X.; Lei, D.; Deng, Y.; Duan, H. Topology Optimization-Based Inverse Design of Plasmonic Nanodimer with Maximum Near-Field Enhancement. Adv. Funct. Mater. 2020, 30, 2000642. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, S.; Chen, Y.; Liu, Y.; Li, P.; Wang, Z.; Zhu, X.; Bi, K.; Duan, H. Double Fano resonances in hybrid disk/rod artificial plasmonic molecules based on dipole-quadrupole coupling. Nanoscale 2020, 12, 9776–9785. [Google Scholar] [CrossRef]
- Ge, Q.; Li, Z.; Wang, Z.; Kowsari, K.; Zhang, W.; He, X.; Zhou, J.; Fang, N.X. Projection micro stereolithography based 3D printing and its applications. Int. J. Extrem. Manuf. 2020, 2, 022004. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Y.; Ye, H.; Duan, G.; Duan, H.; Ge, Q.; Wang, Z. Color-Changeable Four-Dimensional Printing Enabled with Ultraviolet-Curable and Thermochromic Shape Memory Polymers. ACS Appl. Mater. Interfaces 2021, 13, 18120–18127. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Duan, G.; Zhang, C.; Cheng, P.; Wang, Z. 3D printed hydrogel for soft thermo-responsive smart window. Int. J. Extrem. Manuf. 2022, 4, 025302. [Google Scholar] [CrossRef]
- Xie, M.; Duan, H.; Cheng, P.; Chen, Y.; Dong, Z.; Wang, Z. Underwater Unidirectional Cellular Fluidics. ACS Appl. Mater. Interfaces 2022, 14, 9891–9898. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, Y.; Gong, S.; Li, W.; Duan, H.; Cheng, P.; Chen, Y.; Dong, Z. Three-Dimensional Open Water Microchannel Transpiration Mimetics. ACS Appl. Mater. Interfaces 2022, 14, 30435–30442. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.X.; Wang, F.Q.; Yang, L.W.; Cheng, Z.M.; Shuai, Y.; Tan, H.P. Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system. Renew. Sust. Energy Rev. 2021, 141, 110785. [Google Scholar] [CrossRef]
- Liang, H.X.; Wang, F.Q.; Zhang, D.; Cheng, Z.M.; Zhang, C.X.; Lin, B.; Xu, H.J. Experimental investigation of cost-effective ZnO nanofluid based spectral splitting CPV/T system. Energy 2020, 194, 116913. [Google Scholar]
- Liang, H.X.; Han, H.; Wang, F.Q.; Cheng, Z.M.; Lin, B.; Pan, Y.Z.; Tan, J.Y. Experimental investigation on spectral splitting of photovoltaic/thermal hybrid system with two-axis sun tracking based on SiO2/TiO2 interference thin film. Energy Convers. Manag. 2019, 188, 230–240. [Google Scholar] [CrossRef]
- Liang, H.X.; Su, R.H.; Huang, W.M.; Cheng, Z.M.; Wang, F.Q.; Huang, G.; Yang, D.L. A novel spectral beam splitting photovoltaic/thermal hybrid system based on semi-transparent solar cell with serrated groove structure for co-generation of electricity and high-grade thermal energy. Energy Convers. Manag. 2022, 252, 115049. [Google Scholar] [CrossRef]
- Liang, H.X.; Wang, F.Q.; Li, D.; Zhu, J.; Tan, J.Y. Optical properties and transmittances of ZnO-containing nanofluids in spectral splitting photovoltaic/thermal systems. Int. J. Heat Mass Transf. 2019, 128, 668–678. [Google Scholar]
- Cheng, Z.M.; Wang, F.Q.; Gong, D.Y.; Liang, H.X.; Shuai, Y. Low-cost radiative cooling blade coating with ultrahigh visible light transmittance and emission within an “atmospheric window”. Solar Energy Mater. Solar Cells 2020, 213, 110563. [Google Scholar]
- Cheng, Z.M.; Han, H.; Wang, F.Q.; Yan, Y.Y.; Shi, X.H.; Liang, H.X.; Zhang, X.P.; Shuai, Y. Efficient radiative cooling coating with biomimetic human skin wrinkle structure. Nano Energy 2021, 89, 106377. [Google Scholar] [CrossRef]
- Nelson, R.E. A brief history of thermophotovoltaic development. Semicond. Sci. Technol. 2003, 18, S141–S143. [Google Scholar] [CrossRef]
- Burger, T.; Sempere, C.; Roy-Layinde, B.; Lenert, A. Present Efficiencies and Future Opportunities in Thermophotovoltaics. Joule 2020, 4, 1660–1680. [Google Scholar] [CrossRef]
- Cai, Q.; Chen, P.; Cao, S.; Ye, Q.; Wu, X. Performance analysis of GaSb cell and thermophotovoltaic system under near-field thermal radiation. Int. J. Thermophys. 2020, 41, 1–15. [Google Scholar] [CrossRef]
- Chen, P.; Xu, Q.; Zhang, X.; Wu, X.; Cai, Q. Effectiveness of surface polaritons in performance improvement of the near-field thermophotovoltaic system with a metamaterial radiator. Heat Transf. Res. 2019, 50, 321–334. [Google Scholar] [CrossRef]
- Li, K.; Wu, S.; Cao, S.; Cai, Q.; Ye, Q.; Liu, X.; Wu, X. Transient performance of a nanowire-based near-field thermophotovoltaic system. Appl. Therm. Eng. 2021, 192, 116918. [Google Scholar] [CrossRef]
- Xu, Q.; Chen, P.; Wu, X.; Cai, Q. Performance analysis of a metamaterial-based near-field thermophotovoltaic system considering cooling system energy consumption. Int. J. Thermophys. 2019, 40, 1–18. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, Q.; Cao, S.; Zhang, Q.; Yang, X.; Ye, Q.; Wu, X. Design and spectral performance of HfO2-based multilayer spectrally selective emitters embedded with VO2 nanoparticles. ACS Appl. Energy Mater. 2022, 5, 8769–8780. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Q.; Cai, Q.; Ye, Q.; Wu, X. Thermal degradation of the multilayer Mo/HfO2 emitter induced by the oxygen diffusion at high temperature in vacuum. Int. J. Heat Mass Transf. 2022, 185, 122425. [Google Scholar] [CrossRef]
- Zhu, K.; Zhang, Y.; Cai, Q.; Ye, Q.; Liu, X.; Wu, X. Performance analysis of the solar thermophotovoltaic system based on the flat absorber-emitter with nonuniform temperature distribution. Heat Transf. Res. 2021, 52, 59–74. [Google Scholar] [CrossRef]
- Wang, B.; Liu, M.; Huang, T.; Zhao, C. Micro/Nanostructures for Far-Field Thermal Emission Control: An Overview. ES Energy Environ. 2019, 6, 18–38. [Google Scholar] [CrossRef]
- Sakakibara, R.; Stelmakh, V.; Chan, W.R.; Ghebrebrhan, M.; Joannopoulos, J.D.; Soljacic, M.; Čelanović, I. Practical emitters for thermophotovoltaics: A review. J. Photonics Energy 2019, 9, 1–20. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, B.; Zhao, C. Selective Thermophotovoltaic Emitter with Aperiodic Multilayer Structures Designed by Machine Learning. ACS Appl. Energy Mater. 2021, 4, 2004–2013. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, K.; Yang, X.; Cao, S.; Pang, H.; Cai, Q.; Ye, Q.; Wu, X. Thermal Degradation of Tungsten Nanowire-Based Hyperbolic Metamaterial Emitters for Near-Field Thermophotovoltaic Applications. Int. J. Thermophys. 2022, 43, 16. [Google Scholar] [CrossRef]
- Chang, C.-C.; Kort-Kamp, W.J.M.; Nogan, J.; Luk, T.S.; Azad, A.K.; Taylor, A.J.; Dalvit, D.A.R.; Sykora, M.; Chen, H.-T. High-Temperature Refractory Metasurfaces for Solar Thermophotovoltaic Energy Harvesting. Nano Lett. 2018, 18, 7665–7673. [Google Scholar] [CrossRef]
- Chirumamilla, M.; Krishnamurthy, G.V.; Rout, S.S.; Ritter, M.; Störmer, M.; Petrov, A.Y.; Eich, M. Thermal stability of tungsten based metamaterial emitter under medium vacuum and inert gas conditions. Sci. Rep. 2020, 10, 3605. [Google Scholar] [CrossRef] [Green Version]
- Xie, M.; Zhang, S.; Cai, B.; Gu, Y.; Liu, X.; Kan, E.; Zeng, H. Van der Waals bilayer antimonene: A promising thermophotovoltaic cell material with 31% energy conversion efficiency. Nano Energy 2017, 38, 561–568. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Xie, Z.; Wei, X.; Guo, T.; Fan, J.; Ni, L.; Tian, Y.; Liu, J.; Duan, L. Tunable electronic properties of an Sb/InSe van der Waals heterostructure by electric field effects. Phys. Chem. Chem. Phys. 2019, 21, 5627–5633. [Google Scholar] [CrossRef]
- Chubb, D. Fundamentals of Thermophotovoltaic Energy Conversion; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Datas, A.; Vaillon, R. Chapter 11—Thermophotovoltaic energy conversion. In Ultra-High Temperature Thermal Energy Storage, Transfer and Conversion; Datas, A., Ed.; Woodhead Publishing: Cambridge, UK, 2021; pp. 285–308. [Google Scholar]
- Fan, D.; Burger, T.; McSherry, S.; Lee, B.; Lenert, A.; Forrest, S.R. Near-perfect photon utilization in an air-bridge thermophotovoltaic cell. Nature 2020, 586, 237–241. [Google Scholar] [CrossRef]
- Omair, Z.; Scranton, G.; Pazos-Outón, L.M.; Xiao, T.P.; Steiner, M.A.; Ganapati, V.; Peterson, P.F.; Holzrichter, J.; Atwater, H.; Yablonovitch, E. Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering. Proc. Natl. Acad. Sci. USA 2019, 116, 15356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gamel, M.M.; Lee, H.J.; Rashid, W.E.; Ker, P.J.; Yau, L.K.; Hannan, M.A.; Jamaludin, M.Z. A Review on Thermophotovoltaic Cell and Its Applications in Energy Conversion: Issues and Recommendations. Materials 2021, 14, 4944. [Google Scholar] [CrossRef] [PubMed]
- Kishita, Y.; Kashima, S.; Kawajiri, K.; Isoda, Y.; Shinohara, Y. Designing Technology Diffusion Roadmaps of Thermoelectric Generators Toward a Carbon-Neutral Society. IEEE Trans. Eng. Manag. 2021, 1–8. [Google Scholar] [CrossRef]
- Chia, L.C.; Feng, B. The development of a micropower (micro-thermophotovoltaic) device. J. Power Sources 2007, 165, 455–480. [Google Scholar] [CrossRef]
- Bierman, D.M.; Lenert, A.; Chan, W.R.; Bhatia, B.; Celanović, I.; Soljačić, M.; Wang, E.N. Enhanced photovoltaic energy conversion using thermally based spectral shaping. Nat. Energy 2016, 1, 16068. [Google Scholar] [CrossRef]
- Beretta, D.; Neophytou, N.; Hodges, J.M.; Kanatzidis, M.G.; Narducci, D.; Martin- Gonzalez, M.; Beekman, M.; Balke, B.; Cerretti, G.; Tremel, W.; et al. Thermoelectrics: From history, a window to the future. Mater. Sci. Eng. R Rep. 2019, 138, 100501. [Google Scholar] [CrossRef]
- LaPotin, A.; Schulte, K.L.; Steiner, M.A.; Buznitsky, K.; Kelsall, C.C.; Friedman, D.J.; Tervo, E.J.; France, R.M.; Young, M.R.; Rohskopf, A.; et al. Thermophotovoltaic efficiency of 40%. Nature 2022, 604, 287–291. [Google Scholar] [CrossRef]
- Wei, J.; Yang, L.; Ma, Z.; Song, P.; Zhang, M.; Ma, J.; Yang, F.; Wang, X. Review of current high-ZT thermoelectric materials. J. Mater. Sci. 2020, 55, 12642–12704. [Google Scholar] [CrossRef]
- Elsheikh, M.H.; Shnawah, D.A.; Sabri, M.F.M.; Said, S.B.M.; Hassan, M.H.; Bashir, M.B.A.; Mohamad, M. A review on thermoelectric renewable energy: Principle parameters that affect their performance. Renew. Sustain. Energy Rev. 2014, 30, 337–355. [Google Scholar] [CrossRef]
- Zoghi, M.; Habibi, H.; Chitsaz, A.; Holagh, S.G. Multi-criteria analysis of a novel biomass-driven multi-generation system including combined cycle power plant integrated with a modified Kalina-LNG subsystem employing thermoelectric generator and PEM electrolyzer. Therm. Sci. Eng. Prog. 2021, 26, 101092. [Google Scholar] [CrossRef]
- Saleh, U.A.; Johar, M.A.; Jumaat, S.A.B.; Rejab, M.N.; Jamaludin, W.A.W. Evaluation of a PV-TEG Hybrid System Configuration for an Improved Energy Output: A Review. Int. J. Renew. Energy Dev. 2021, 10, 385–400. [Google Scholar] [CrossRef]
- Gholamian, E.; Habibollahzade, A.; Zare, V. Development and multi-objective optimization of geothermal-based organic Rankine cycle integrated with thermoelectric generator and proton exchange membrane electrolyzer for power and hydrogen production. Energy Convers. Manag. 2018, 174, 112–125. [Google Scholar] [CrossRef]
- Suraparaju, S.K.; Kartheek, G.; Sunil Reddy, G.V.; Natarajan, S.K. A short review on recent trends and applications of thermoelectric generators. IOP Conf. Ser. Earth Environ. Sci. 2019, 312, 012013. [Google Scholar] [CrossRef]
- Dongxu, J.; Zhongbao, W.; Pou, J.; Mazzoni, S.; Rajoo, S.; Romagnoli, A. Geometry optimization of thermoelectric modules: Simulation and experimental study. Energy Convers. Manag. 2019, 195, 236–243. [Google Scholar] [CrossRef]
- Ji, D.; Wei, Z.; Mazzoni, S.; Mengarelli, M.; Rajoo, S.; Zhao, J.; Pou, J.; Romagnoli, A. Thermoelectric generation for waste heat recovery: Application of a system level design optimization approach via Taguchi method. Energy Convers. Manag. 2018, 172, 507–516. [Google Scholar] [CrossRef]
- Ji, D.; Hu, S.; Feng, Y.; Qin, J.; Yin, Z.; Romagnoli, A.; Zhao, J.; Qian, H. Geometry optimization of solar thermoelectric generator under different operating conditions via Taguchi method. Energy Convers. Manag. 2021, 238, 114158. [Google Scholar] [CrossRef]
- Luo, D.; Wang, R.; Yu, W.; Zhou, W. A numerical study on the performance of a converging thermoelectric generator system used for waste heat recovery. Appl. Energy 2020, 270, 115181. [Google Scholar] [CrossRef]
- Shittu, S.; Li, G.; Zhao, X.; Ma, X.; Akhlaghi, Y.G.; Ayodele, E. High performance and thermal stress analysis of a segmented annular thermoelectric generator. Energy Convers. Manag. 2019, 184, 180–193. [Google Scholar] [CrossRef]
- Yu, J.; Kong, L.; Zhu, Q.; Zhu, H.; Wang, H.; Guan, J.; Yan, Q. Thermal Stress Analysis of a Segmented Thermoelectric Generator under a Pulsed Heat Source. J. Electron. Mater. 2020, 49, 4392–4402. [Google Scholar] [CrossRef]
- Harish, S.; Sivaprahasam, D.; Jayachandran, B.; Gopalan, R.; Sundararajan, G. Performance of bismuth telluride modules under thermal cycling in an automotive exhaust thermoelectric generator. Energy Convers. Manag. 2021, 232, 113900. [Google Scholar] [CrossRef]
- Zhang, Z.M. Nano/Microscale Heat Transfer; Springer: Berlin/Heidelberg, Germany, 2007; Volume 410. [Google Scholar]
- Liu, X.; Wang, L.; Zhang, Z.M. Near-field thermal radiation: Recent progress and outlook. Nanoscale Microscale Thermophys. Eng. 2015, 19, 98–126. [Google Scholar] [CrossRef]
- Wu, X.; Fu, C.; Zhang, Z.M. Effect of orientation on the directional and hemispherical emissivity of hyperbolic metamaterials. Int. J. Heat Mass Transf. 2019, 135, 1207–1217. [Google Scholar] [CrossRef]
- Wu, X.; McEleney, C.A.; González-Jiménez, M.; Macêdo, R. Emergent asymmetries and enhancement in the absorption of natural hyperbolic crystals. Optica 2019, 6, 1478–1483. [Google Scholar] [CrossRef]
- Biehs, S.-A.; Tschikin, M.; Ben-Abdallah, P. Hyperbolic metamaterials as an analog of a blackbody in the near field. Phys. Rev. Lett. 2012, 109, 104301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, R.; Zhou, C.; Zhang, Y.; Cui, Z.; Wu, X.; Yi, H. Near-field radiative heat transfer in hyperbolic materials. Int. J. Extrem. Manuf. 2022, 4, 032002. [Google Scholar] [CrossRef]
- Wu, X.; Fu, C.; Zhang, Z.M. Near-field radiative heat transfer between two α-MoO3 biaxial crystals. J. Heat Transf. 2020, 142, 072802. [Google Scholar] [CrossRef]
- Wu, X.; Fu, C. Near-field radiative heat transfer between uniaxial hyperbolic media: Role of volume and surface phonon polaritons. J. Quant. Spectrosc. Radiat. Transf. 2021, 258, 107337. [Google Scholar] [CrossRef]
- Wu, X.; Liu, R. Near-field radiative heat transfer between graphene covered biaxial hyperbolic materials. ES Energy Environ. 2020, 10, 66–72. [Google Scholar] [CrossRef]
- Shi, K.Z.; Sun, Y.C.; Chen, Z.Y.; He, N.; Bao, F.L.; Evans, J.; He, S.L. Colossal Enhancement of Near-Field Thermal Radiation Across Hundreds of Nanometers between Millimeter-Scale Plates through Surface Plasmon and Phonon Polaritons Coupling. Nano Lett. 2019, 19, 8082–8088. [Google Scholar] [CrossRef]
- Song, J.L.; Cheng, Q. Near-field radiative heat transfer between graphene and anisotropic magneto-dielectric hyperbolic metamaterials. Phys. Rev. B 2016, 94, 125419. [Google Scholar] [CrossRef]
- Wu, H.H.; Huang, Y.; Cui, L.J.; Zhu, K.Y. Active Magneto-Optical Control of Near-Field Radiative Heat Transfer between Graphene Sheets. Phys. Rev. Appl. 2019, 11, 054020. [Google Scholar] [CrossRef]
- Zhang, Y.; Yi, H.L.; Tan, H.P. Near-Field Radiative Heat Transfer between Black Phosphorus Sheets via Anisotropic Surface Plasmon Polaritons. ACS Photonics 2018, 5, 3739–3747. [Google Scholar] [CrossRef]
- Shi, K.Z.; Bao, F.L.; He, S.L. Enhanced Near-Field Thermal Radiation Based on Multilayer Graphene-hBN Heterostructures. ACS Photonics 2017, 4, 971–978. [Google Scholar] [CrossRef]
- Shi, K.Z.; Liao, R.; Cao, G.J.; Bao, F.L.; He, S.L. Enhancing thermal radiation by graphene-assisted hBN/SiO2 hybrid structures at the nanoscale. Opt. Express 2018, 26, A591–A601. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.H.; Fu, C.J.; Zhang, Z.M. Influence of hBN orientation on the near-field radiative heat transfer between graphene/hBN heterostructures. J. Photonics Energy 2019, 9, 032702. [Google Scholar] [CrossRef]
- Hu, Y.; Sun, Y.S.; Zheng, Z.H.; Song, J.L.; Shi, K.Z.; Wu, X.H. Rotation-induced significant modulation of near-field radiative heat transfer between hyperbolic nanoparticles. Int. J. Heat Mass Transf. 2022, 189, 122666. [Google Scholar] [CrossRef]
- Zhu, L.X.; Otey, C.R.; Fan, S.H. Ultrahigh contrast and large-bandwidth thermal rectification in near-field electromagnetic thermal transfer between nanoparticles. Phys. Rev. B 2013, 88, 184301. [Google Scholar] [CrossRef]
- Ben-Abdallah, P.; Biehs, S.A. Near-Field Thermal Transistor. Phys. Rev. Lett. 2014, 112, 044301. [Google Scholar] [CrossRef] [Green Version]
- Biehs, S.A.; Rosa, F.S.S.; Ben-Abdallah, P. Modulation of near-field heat transfer between two gratings. Appl. Phys. Lett. 2011, 98, 243102. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.L.; Shen, J.D.; Xuan, Y.M. Pattern-free thermal modulator via thermal radiation between Van der Waals materials. J. Quant. Spectrosc. Radiat. Transf. 2017, 200, 100–107. [Google Scholar] [CrossRef]
- Fiorino, A.; Zhu, L.X.; Thompson, D.; Mittapally, R.; Reddy, P.; Meyhofer, E. Nanogap near-field thermophotovoltaics. Nat. Nanotechnol. 2018, 13, 806. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Ikeda, K.; Song, B.S.; Suzuki, T.; Ishino, K.; Asano, T.; Noda, S. Integrated Near-Field Thermophotovoltaic Device Overcoming Blackbody Limit. ACS Photonics 2021, 8, 2466–2472. [Google Scholar] [CrossRef]
- Inoue, T.; Koyama, T.; Kang, D.D.; Ikeda, K.; Asano, T.; Noda, S. One-Chip Near-Field Thermophotovoltaic Device Integrating a Thin-Film Thermal Emitter and Photovoltaic Cell. Nano Lett. 2019, 19, 3948–3952. [Google Scholar] [CrossRef] [PubMed]
- Lucchesi, C.; Cakiroglu, D.; Perez, J.-P.; Taliercio, T.; Tournié, E.; Chapuis, P.-O.; Vaillon, R. Near-Field Thermophotovoltaic Conversion with High Electrical Power Density and Cell Efficiency above 14%. Nano Lett. 2021, 21, 4524–4529. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, M.-J.; Sun, Y.-S.; Wang, Z.-L.; Wang, B.-X. Micro/Nanomaterials for Heat Transfer, Energy Storage and Conversion. Coatings 2023, 13, 11. https://doi.org/10.3390/coatings13010011
He M-J, Sun Y-S, Wang Z-L, Wang B-X. Micro/Nanomaterials for Heat Transfer, Energy Storage and Conversion. Coatings. 2023; 13(1):11. https://doi.org/10.3390/coatings13010011
Chicago/Turabian StyleHe, Ming-Jian, Ya-Song Sun, Zhao-Long Wang, and Bo-Xiang Wang. 2023. "Micro/Nanomaterials for Heat Transfer, Energy Storage and Conversion" Coatings 13, no. 1: 11. https://doi.org/10.3390/coatings13010011
APA StyleHe, M. -J., Sun, Y. -S., Wang, Z. -L., & Wang, B. -X. (2023). Micro/Nanomaterials for Heat Transfer, Energy Storage and Conversion. Coatings, 13(1), 11. https://doi.org/10.3390/coatings13010011