Effect of Voltage on the Microstructure and High-Temperature Oxidation Resistance of Micro-Arc Oxidation Coatings on AlTiCrVZr Refractory High-Entropy Alloy
Abstract
:1. Introduction
2. Experimental Process
2.1. Sample Pretreatment
2.2. Preparation of the MAO Coating
2.3. Microstructure Analysis and Performance Characterization
3. Results and Discussion
3.1. Microstructure of the Coating
3.2. Chemical Composition of the Coating
3.3. High-Temperature Oxidation Resistance
4. Conclusions
- (1)
- Under different MAO voltages, ceramic coatings with a thickness of 40–50 μm were prepared on the AlTiCrVZr RHEA. With the increase in voltage, the surface of the coating was smoother and denser, but the internal defects of the ceramic coating increased, especially the obvious microcracks in the coating prepared at 450 V.
- (2)
- The solute ions and matrix elements contained in the electrolyte during the MAO process were involved in the coating-forming reaction, and the coating composition was mainly Al2O3, TiO2, Cr2O3, V2O5, ZrO2, and SiO2.
- (3)
- Compared with the matrix alloy, the high-temperature oxidation resistance of MAO-coated samples prepared using different voltages was improved after 5 h and 20 h of oxidation at 800 °C. Among them, the coating prepared at 420 V exhibited better high-temperature oxidation resistance after long-term oxidation for 20 h.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, J.; Zhou, X.; Wang, W.; Liu, B.; Lv, Y.; Yang, W.; Xu, D.; Liu, Y. A review on fundamental of high entropy alloys with promising high–temperature properties. J. Alloys Compd. 2018, 760, 15–30. [Google Scholar] [CrossRef]
- Ma, M.; Han, A.; Zhang, Z.; Lian, Y.; Zhao, C.; Zhang, J. The role of Si on microstructure and high-temperature oxidation of CoCr2FeNb0.5Ni high-entropy alloy coating. Corros. Sci. 2021, 185, 109417. [Google Scholar] [CrossRef]
- Stepanov, N.D.; Yurchenko, N.Y.; Panina, E.S.; Tikhonovsky, M.A.; Zherebtsov, S.V. Precipitation-strengthened refractory Al0.5CrNbTi2V0.5 high entropy alloy. Mater. Lett. 2017, 188, 162–164. [Google Scholar] [CrossRef]
- Kumari, P.; Gupta, A.K.; Mishra, R.K.; Ahmad, M.; Shahi, R.R. A Comprehensive Review: Recent Progress on Magnetic High Entropy Alloys and Oxides. J. Magn. Magn. Mater. 2022, 554, 169142. [Google Scholar] [CrossRef]
- Liu, S.S.; Zhang, M.; Zhao, G.L.; Wang, X.H.; Wang, J.F. Microstructure and properties of ceramic particle reinforced FeCoNiCrMnTi high entropy alloy laser cladding coating. Intermetallics 2022, 140, 107402. [Google Scholar] [CrossRef]
- Kuang, J.; Zhang, P.; Wang, Q.; Hu, Z.; Liang, X.; Shen, B. Formation and oxidation behavior of refractory high-entropy silicide (NbMoTaW)Si2 coating. Corros. Sci. 2022, 198, 110134. [Google Scholar] [CrossRef]
- Lu, S.; Li, X.; Liang, X.; Shao, W.; Yang, W.; Chen, J. Effect of Al content on the oxidation behavior of refractory high-entropy alloy AlMo0.5NbTa0.5TiZr at elevated temperatures. Int. J. Refract. Met. Hard Mater. 2022, 105, 105812. [Google Scholar] [CrossRef]
- Shao, L.; Yang, M.; Ma, L.; Tang, B.-Y. Effect of Ta and Ti content on high temperature elasticity of HfNbZrTa1−xTix refractory high-entropy alloys. Int. J. Refract. Met. Hard Mater. 2021, 95, 105451. [Google Scholar] [CrossRef]
- Kao, P.-C.; Hsu, C.-J.; Chen, Z.-H.; Chen, S.-H. Highly transparent and conductive MoO3/Ag/MoO3 multilayer films via air annealing of the MoO3 layer for ITO-free organic solar cells. J. Alloys Compd. 2022, 906, 164387. [Google Scholar] [CrossRef]
- Shi, X.; Yang, W.; Cheng, Z.; Shao, W.; Xu, D.; Zhang, Y.; Chen, J. Influence of micro arc oxidation on high temperature oxidation resistance of AlTiCrVZr RHEA. Int. J. Refract. Met. Hard Mater. 2021, 98, 105562. [Google Scholar] [CrossRef]
- Jia, X.; Song, J.; Zhao, L.; Jiang, B.; Yang, H.; Zhao, T.; Zhao, H.; Liu, Q.; Pan, F. The corrosion behaviour of MAO coated AZ80 magnesium alloy with surface indentation of different sizes. Eng. Fail. Anal. 2022, 136, 106185. [Google Scholar] [CrossRef]
- Yang, W.; Xu, D.; Guo, Q.; Chen, T.; Chen, J. Influence of electrolyte composition on microstructure and properties of coatings formed on pure Ti substrate by micro arc oxidation. Surf. Coat. Technol. 2018, 349, 522–528. [Google Scholar] [CrossRef]
- Cheng, F.; Li, S.; Gui, W.; Lin, J. Surface modification of Ti-45Al-8.5 Nb alloys by microarc oxidation to improve high-temperature oxidation resistance. Prog. Nat. Sci. Mater. Int. 2018, 28, 386–390. [Google Scholar] [CrossRef]
- Cheng, Z.; Yang, W.; Xu, D.; Wu, S.; Yao, X.; Lv, Y.; Chen, J. Improvement of high temperature oxidation resistance of micro arc oxidation coated AlTiNbMo0.5Ta0.5Zr high entropy alloy. Mater. Lett. 2020, 262, 127192. [Google Scholar] [CrossRef]
- Yilmaz, M.S.; Sahin, O. Applying high voltage cathodic pulse with various pulse durations on aluminium via micro-arc oxidation (MAO). Surf. Coat. Technol. 2018, 347, 278–285. [Google Scholar] [CrossRef]
- Du, Q.; Wei, D.; Wang, Y.; Cheng, S.; Liu, S.; Zhou, Y.; Jia, D. The effect of applied voltages on the structure, apatite-inducing ability and antibacterial ability of micro arc oxidation coating formed on titanium surface. Bioact. Mater. 2018, 3, 426–433. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.; Lu, Y.; Du, M.H.; Han, F.Z. Effects of single pulse energy on the properties of ceramic coating prepared by micro-arc oxidation on Ti alloy. Appl. Surf. Sci. 2015, 324, 405–413. [Google Scholar] [CrossRef]
- Zhang, J.; Fan, Y.; Zhao, X.; Ma, R.; Du, A.; Cao, X. Influence of duty cycle on the growth behavior and wear resistance of micro-arc oxidation coatings on hot dip aluminized cast iron. Surf. Coat. Technol. 2018, 337, 141–149. [Google Scholar] [CrossRef]
- Bai, L.; Dong, B.; Chen, G.; Xin, T.; Wu, J.; Sun, X. Effect of positive pulse voltage on color value and corrosion property of magnesium alloy black MAO ceramic coating. Surf. Coat. Technol. 2019, 374, 402–408. [Google Scholar] [CrossRef]
- Douillard, J.-M.; Salles, F.; Henry, M.; Malandrini, H.; Clauss, F. Surface energy of talc and chlorite: Comparison between electronegativity calculation and immersion results. J. Colloid Interface Sci. 2007, 305, 352–360. [Google Scholar] [CrossRef]
- Qteish, A. Electronegativity scales and electronegativity-bond ionicity relations: A comparative study. J. Phys. Chem. Solids 2019, 124, 186–191. [Google Scholar] [CrossRef]
- Guan, S.; Qi, M.; Wang, C.; Wang, S.; Wang, W. Enhanced cytocompatibility of Ti6Al4V alloy through selective removal of Al and V from the hierarchical MAO coating. Appl. Surf. Sci. 2021, 541, 148547. [Google Scholar] [CrossRef]
- Lan, N.; Yang, W.; Gao, W.; Guo, P.; Zhao, C.; Chen, J. Characterization of ta-C film on micro arc oxidation coated titanium alloy in simulated seawater. Diam. Relat. Mater. 2021, 117, 108483. [Google Scholar] [CrossRef]
- Rajesh, V.; Veeramuthu, K.; Shiyamala, C. Investigation of the morphological, optical and electrochemical capabilities of V2O5/MWCNT nanoparticles synthesized using a microwave autoclave technique. JCIS Open 2021, 4, 100032. [Google Scholar] [CrossRef]
- Barreca, D.; Battiston, G.A.; Gerbasi, R.; Tondello, E.; Zanella, P. Zirconium Dioxide Thin Films Characterized by XPS. Surf. Sci. Spectra 2000, 7, 303–309. [Google Scholar] [CrossRef]
- Xu, G.; Shen, X. Fabrication of SiO2 nanoparticles incorporated coating onto titanium substrates by the micro arc oxidation to improve the wear resistance. Surf. Coat. Technol. 2019, 364, 180–186. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, Y.; Liu, B.; Zhang, W.D.; Wang, J.W.; Meng, D.U. Effects of Al and Mo on high temperature oxidation behavior of RHEAs. Trans. Nonferrous Met. Soc. China 2019, 29, 1476–1483. [Google Scholar] [CrossRef]
Voltages | O | Al | Si | P | Ti | Cr | V | Zr |
---|---|---|---|---|---|---|---|---|
360 V | 71.9 | 3.0 | 11.9 | 1.1 | 3.1 | 2.3 | 1.3 | 5.4 |
390 V | 70.4 | 3.0 | 16.0 | 0.2 | 3.0 | 1.1 | 1.4 | 4.9 |
420 V | 70.6 | 2.9 | 16.3 | 0.4 | 2.7 | 1.0 | 1.4 | 4.7 |
450 V | 69.8 | 2.6 | 15.6 | 1.2 | 2.8 | 1.9 | 1.5 | 4.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Cheng, Z.; Zhang, Y.; Shi, X.; Rao, M.; Wu, S. Effect of Voltage on the Microstructure and High-Temperature Oxidation Resistance of Micro-Arc Oxidation Coatings on AlTiCrVZr Refractory High-Entropy Alloy. Coatings 2023, 13, 14. https://doi.org/10.3390/coatings13010014
Wang Z, Cheng Z, Zhang Y, Shi X, Rao M, Wu S. Effect of Voltage on the Microstructure and High-Temperature Oxidation Resistance of Micro-Arc Oxidation Coatings on AlTiCrVZr Refractory High-Entropy Alloy. Coatings. 2023; 13(1):14. https://doi.org/10.3390/coatings13010014
Chicago/Turabian StyleWang, Zhao, Zhaohui Cheng, Yong Zhang, Xiaoqian Shi, Mosong Rao, and Shangkun Wu. 2023. "Effect of Voltage on the Microstructure and High-Temperature Oxidation Resistance of Micro-Arc Oxidation Coatings on AlTiCrVZr Refractory High-Entropy Alloy" Coatings 13, no. 1: 14. https://doi.org/10.3390/coatings13010014
APA StyleWang, Z., Cheng, Z., Zhang, Y., Shi, X., Rao, M., & Wu, S. (2023). Effect of Voltage on the Microstructure and High-Temperature Oxidation Resistance of Micro-Arc Oxidation Coatings on AlTiCrVZr Refractory High-Entropy Alloy. Coatings, 13(1), 14. https://doi.org/10.3390/coatings13010014