Impact of Microstructure of Nanoscale Magnetron Sputtered Ru/Al Multilayers on Thermally Induced Phase Formation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Ru/Al Multilayers with 160 nm Bilayer Architecture
3.2. Ru/Al Multilayers with 40 nm Bilayer Architecture
3.3. Ru/Al Multilayers with 10 nm Bilayer Architecture
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gösele, U.; Tu, K.N. Growth kinetics of planar binary diffusion couples: “Thin-film case” versus “bulk cases”. J. Appl. Phys. 1982, 53, 3252–3260. [Google Scholar] [CrossRef]
- Greer, A.L. Atomic diffusion and phase transformations in artificially layered thin films. Scr. Metall. 1986, 20, 457–464. [Google Scholar] [CrossRef]
- Coffey, K.R.; Barmak, K. A new model for grain boundary diffusion and nucleation in thin film reactions. Acta Metall. Mater. 1994, 42, 2905–2911. [Google Scholar] [CrossRef]
- Laskar, A.L.; Bocquet, J.L.; Brebec, G.; Monty, C. Diffusion in Materials; Springer: Dordrecht, The Netherlands, 1990; ISBN 978-94-010-7383-7. [Google Scholar]
- Pretorius, R.; Marais, T.K.; Theron, C.C. Thin film compound phase formation sequence: An effective heat of formation model. Mater. Sci. Rep. 1993, 10, 1–83. [Google Scholar] [CrossRef]
- Hodaj, F.; Gusak, A.M. Suppression of intermediate phase nucleation in binary couples with metastable solubility. Acta Mater. 2004, 52, 4305–4315. [Google Scholar] [CrossRef]
- Bené, R.W. First nucleation rule for solid-state nucleation in metal-metal thin-film systems. Appl. Phys. Lett. 1982, 41, 529–531. [Google Scholar] [CrossRef]
- Anderson, S.; Lang, C. Thermal Conductivity of Ruthenium Aluminide (RuAl). Scr. Mater. 1998, 38, 493–497. [Google Scholar] [CrossRef]
- Fleischer, R.L. Intermetallic Compounds for High-Temperature Structural Use: Unique Iridium and Ruthenium Compounds. Platin. Met. Rev. 1992, 36, 138–145. [Google Scholar]
- Mücklich, F.; Ilić, N. RuAl and its alloys. Part I. Structure, physical properties, microstructure and processing. Intermetallics 2005, 13, 5–21. [Google Scholar] [CrossRef]
- Mücklich, F.; Ilić, N.; Woll, K. RuAl and its alloys, Part II: Mechanical properties, environmental resistance and applications. Intermetallics 2008, 16, 593–608. [Google Scholar] [CrossRef]
- Bellina, P.J. High Temperature Oxidation of Bulk RuAl Alloy. Ph.D. Thesis, Universität Stuttgart, Stuttgart, Germany, 2006. [Google Scholar]
- Tryon, B.; Pollock, T.M.; Gigliotti, M.; Hemker, K. Thermal expansion behavior of ruthenium aluminides. Scr. Mater. 2004, 50, 845–848. [Google Scholar] [CrossRef]
- Woll, K.; Chinnam, R.; Mücklich, F. Thin-Film Synthesis and Cyclic Oxidation Behavior of B2-RuAl. MRS Proc. 2008, 1128, U06–U10. [Google Scholar] [CrossRef]
- Povarova, K.B.; Morozov, A.E.; Drozdov, A.A. Heat-Resistant RuAl-Based Alloys: Part I. Cast Alloys. Inorg. Mater. Appl. Res. 2020, 11, 277–286. [Google Scholar] [CrossRef]
- Povarova, K.B.; Morozov, A.E.; Drozdov, A.A.; Antonova, A.V.; Bulakhtina, M.A. Heat-Resistant RuAl-Based Alloys: Part II. Powder Alloys—Preparation via Reaction Sintering. Inorg. Mater. Appl. Res. 2021, 12, 1125–1138. [Google Scholar] [CrossRef]
- Gobran, H.; Ilić, N.; Mücklich, F. Effects of particle size and pressure on the reactive sintering of RuAl intermetallic compound. Intermetallics 2004, 12, 555–562. [Google Scholar] [CrossRef]
- Edelstein, A.S.; Everett, R.K.; Richardson, G.Y.; Qadri, S.B.; Altman, E.I.; Foley, J.C.; Perepezko, J.H. Intermetallic phase formation during annealing of Al/Ni multilayers. J. Appl. Phys. 1994, 76, 7850–7859. [Google Scholar] [CrossRef] [Green Version]
- Weihs, T.P. Self-propagating reactions in multilayer materials. In Handbook of Thin Film Process Technology; Glocker, D.A., Ismat Shah, S., Eds.; CRC Press: Boca Raton, FL, USA, 2018; ISBN 9781351072786. [Google Scholar]
- Munir, Z.A.; Anselmi-Tamburini, U. Self-propagating exothermic reactions: The synthesis of high-temperature materials by combustion. Mater. Sci. Rep. 1989, 3, 279–365. [Google Scholar] [CrossRef]
- Adams, D.P. Reactive multilayers fabricated by vapor deposition: A critical review. Thin Solid Film. 2015, 576, 98–128. [Google Scholar] [CrossRef] [Green Version]
- Pauly, C. Selbstfortschreitende Reaktionen in Ru/Al/X-Multilagen. Ph.D. Thesis, Universität des Saarlandes, Saarbrücken, Germany, 2017. [Google Scholar]
- Pauly, C.; Woll, K.; Gallino, I.; Stüber, M.; Leiste, H.; Busch, R.; Mücklich, F. Ignition in ternary Ru/Al-based reactive multilayers—Effects of chemistry and stacking sequence. J. Appl. Phys. 2018, 124, 195301. [Google Scholar] [CrossRef]
- Pauly, C.; Woll, K.; Bax, B.; Mücklich, F. The role of transitional phase formation during ignition of reactive multilayers. Appl. Phys. Lett. 2015, 107, 113104. [Google Scholar] [CrossRef]
- Zotov, N.; Woll, K.; Mücklich, F. Phase formation of B2-RuAl during annealing of Ru/Al multilayers. Intermetallics 2010, 18, 1507–1516. [Google Scholar] [CrossRef]
- Woll, K. Festkörper- und Selbstfortschreitende Reaktionen in Multilagen zur RuAl-Dünnschichtsynthese. Ph.D. Thesis, Universität des Saarlandes, Saarbrücken, Germany, 2012. [Google Scholar]
- Guitar, M.A.; Aboulfadl, H.; Pauly, C.; Leibenguth, P.; Migot, S.; Mücklich, F. Production of single-phase intermetallic films from Ru-Al multilayers. Surf. Coat. Technol. 2014, 244, 210–216. [Google Scholar] [CrossRef]
- Giannuzzi, L.A.; Kempshall, B.W.; Schwarz, S.M.; Lomness, J.K.; Prenitzer, B.I.; Stevie, F.A. FIB Lift-Out Specimen Preparation Techniques. In Introduction to Focused Ion Beams; Springer: Boston, MA, USA, 2005; pp. 201–228. [Google Scholar] [CrossRef]
- Thornton, J.A. Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. J. Vac. Sci. Technol. 1974, 11, 666–670. [Google Scholar] [CrossRef]
- Petrov, I.; Barna, P.B.; Hultman, L.; Greene, J.E. Microstructural evolution during film growth. J. Vac. Sci. Technol. A Vac. Surf. Film. 2003, 21, S117–S128. [Google Scholar] [CrossRef]
- Floro, J.A.; Chason, E.; Cammarata, R.C.; Srolovitz, D.J. Physical Origins of Intrinsic Stresses in Volmer–Weber Thin Films. MRS Bull. 2002, 27, 19–25. [Google Scholar] [CrossRef]
- Wan, L.; Yu, X.; Zhou, X.; Thompson, G. Interrelationship of in situ growth stress evolution and phase transformations in Ti/W multilayered thin films. J. Appl. Phys. 2016, 119, 245302. [Google Scholar] [CrossRef]
- Abadias, G.; Chason, E.; Keckes, J.; Sebastiani, M.; Thompson, G.B.; Barthel, E.; Doll, G.L.; Murray, C.E.; Stoessel, C.H.; Martinu, L. Review Article: Stress in thin films and coatings: Current status, challenges, and prospects. J. Vac. Sci. Technol. A Vac. Surf. Film. 2018, 36, 20801. [Google Scholar] [CrossRef] [Green Version]
- Pretorius, R.; Vredenberg, A.M.; Saris, F.W.; de Reus, R. Prediction of phase formation sequence and phase stability in binary metal-aluminum thin-film systems using the effective heat of formation rule. J. Appl. Phys. 1991, 70, 3636–3646. [Google Scholar] [CrossRef]
- Chaudhury, Z.A.; Suryanarayana, C. Metastable phases in vapour-deposited Al-Ru alloys. J. Mater. Sci. 1982, 17, 3158–3164. [Google Scholar] [CrossRef]
- Aboulfadl, H.; Mücklich, F. Atomic-scale characterization of diffusion kinetics in Ru/Al multilayer thin films. Mater. Lett. 2019, 254, 344–347. [Google Scholar] [CrossRef]
- Paul, A.; Laurila, T.; Vuorinen, V.; Divinski, S.V. Reactive Phase Formation in Thin Films. In Thermodynamics, Diffusion and the Kirkendall Effect in Solids; Paul, A., Laurila, T., Vuorinen, V., Divinski, S.V., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 493–528. ISBN 978-3-319-07460-3. [Google Scholar]
- Gusak, A.M.; Lyashenko, O.Y.; Hodaj, F. The Competition of Intermediate Phases in the Diffusion Zone. Inorg. Mater. Appl. Res. 2019, 10, 517–524. [Google Scholar] [CrossRef]
- Singh, S.; Swain, M.; Basu, S. Kinetics of interface alloy phase formation at nanometer length scale in ultra-thin films: X-ray and polarized neutron reflectometry. Prog. Mater. Sci. 2018, 96, 1–50. [Google Scholar] [CrossRef]
- Cahn, J.W.; Hilliard, J.E. Free Energy of a Nonuniform System. I. Interfacial Free Energy. J. Chem. Phys. 1958, 28, 258–267. [Google Scholar] [CrossRef]
- Thompson, C.V. On the role of diffusion in phase selection during reactions at interfaces. J. Mater. Res. 1992, 7, 367–373. [Google Scholar] [CrossRef]
Bilayer Period (nm) | Thin Film Thickness (µm) | Number of Bilayers | Al Layer Thickness (nm) | Ru Layer Thickness (nm) |
---|---|---|---|---|
160 | 4 | 25 | 88 | 72 |
40 | 4 | 100 | 22 | 18 |
10 | 4 | 400 | 5.5 | 4.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ott, V.; Schäfer, C.; Suarez, S.; Woll, K.; Mücklich, F.; Seifert, H.J.; Ulrich, S.; Pauly, C.; Stueber, M. Impact of Microstructure of Nanoscale Magnetron Sputtered Ru/Al Multilayers on Thermally Induced Phase Formation. Coatings 2023, 13, 149. https://doi.org/10.3390/coatings13010149
Ott V, Schäfer C, Suarez S, Woll K, Mücklich F, Seifert HJ, Ulrich S, Pauly C, Stueber M. Impact of Microstructure of Nanoscale Magnetron Sputtered Ru/Al Multilayers on Thermally Induced Phase Formation. Coatings. 2023; 13(1):149. https://doi.org/10.3390/coatings13010149
Chicago/Turabian StyleOtt, Vincent, Christian Schäfer, Sebastian Suarez, Karsten Woll, Frank Mücklich, Hans J. Seifert, Sven Ulrich, Christoph Pauly, and Michael Stueber. 2023. "Impact of Microstructure of Nanoscale Magnetron Sputtered Ru/Al Multilayers on Thermally Induced Phase Formation" Coatings 13, no. 1: 149. https://doi.org/10.3390/coatings13010149
APA StyleOtt, V., Schäfer, C., Suarez, S., Woll, K., Mücklich, F., Seifert, H. J., Ulrich, S., Pauly, C., & Stueber, M. (2023). Impact of Microstructure of Nanoscale Magnetron Sputtered Ru/Al Multilayers on Thermally Induced Phase Formation. Coatings, 13(1), 149. https://doi.org/10.3390/coatings13010149