Revealing the Enhanced Passivation and Anti-Corrosion Performance of Surface-Nanocrystallization-Modified Cr-Alloyed Rebar via Electrochemical Testing and XPS Depth Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. SNC Processing of the Rebar
2.2. Electrochemical Testing
2.3. Microstructure Characterization
3. Results and Discussion
3.1. Microstructure of the Rebar
3.2. Electrochemical Behavior of Rebar Immersed in SCPS without and with Cl−
3.3. XPS Depth Analysis of the Passive Film of the SNC Rebar
3.4. Surface Nanostructured Grains and Their Contribution to the Enhanced Passive Film on the Rebar
4. Conclusions
- (1)
- The results of electrochemical testing including EIS and PDP confirmed that the SNC rebar had the best passivation performance, and the fitted Rct value obtained during the EIS test was 1.39 times as much as that of the rusted rebar in the SCPS without Cl−. Meanwhile, the SNC rebar had the best corrosion resistance to chloride ions in the Cl−-containing SCPS, and its passivation current density was only about 18% of that of the rusted rebar.
- (2)
- The excellent corrosion resistance of SNC rebar benefits from both the removal of surface rust layer and the strengthening effect of surface nanostructured grains on its passive film. Nanostructured grains with a grain size of about 250–300 nm contain numerous crystal defects, like grain boundaries and intergranular dislocation. The positive influence of high-energy crystal defects in nanostructured grains on the thermodynamics and kinetics of the passive film formation leads to a passive film with higher Cr/Fe oxide and hydroxide content formed on the SNC rebar surface, which enhances the passivation properties and chloride corrosion resistance of the passive film.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abosrra, L.; Ashour, A.F.; Youseffi, M. Corrosion of steel reinforcement in concrete of different compressive strengths. Constr. Build. Mater. 2011, 25, 3915–3925. [Google Scholar] [CrossRef]
- Al-Akhras, N.; Mashaqbeh, Y. Potential use of eucalyptus leaves as green corrosion inhibitor of steel reinforcement. J. Build. Eng. 2021, 35, 101848. [Google Scholar] [CrossRef]
- Xu, P.; Zhou, J.; Li, G.; Wang, P.; Chi, H. Corrosion inhibition efficiency of compound nitrite with D-sodium gluconate on carbon steel in simulated concrete pore solution. Constr. Build. Mater. 2021, 288, 123101. [Google Scholar] [CrossRef]
- Yang, H.; Li, W.; Liu, X.; Liu, A.; Hang, P.; Ding, R.; Li, T.; Zhang, Y.; Wang, W.; Xiong, C. Preparation of corrosion inhibitor loaded zeolites and corrosion resistance of carbon steel in simulated concrete pore solution. Constr. Build. Mater. 2019, 225, 90–98. [Google Scholar] [CrossRef]
- Alawi, A.; Mohammed, M.; Baghabra, A.; Saleh, T.A.; Mohammed, S. Efficiency of generic and proprietary inhibitors in mitigating corrosion of carbon steel in chloride-sulfate environments. Sci. Rep. 2018, 8, 11443. [Google Scholar]
- Liu, Y.; Song, Z.; Wang, W.; Jiang, L.; Zhang, Y.; Guo, M.; Song, F.; Xu, N. Effect of ginger extract as green inhibitor on chloride-induced corrosion of carbon steel in simulated concrete pore solutions. J. Clean. Prod. 2019, 214, 298–307. [Google Scholar] [CrossRef]
- Bellezze, T.; Malavolta, M.; Quaranta, A.; Ruffini, N.; Roventi, G. Corrosion behaviour in concrete of three differently galvanized steel bars. Cem. Concr. Compos. 2006, 28, 246–255. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Li, X.; Ying, J. Bond of epoxy-coated steel bars to seawater sea sand recycled concrete. Structures 2021, 30, 866–876. [Google Scholar] [CrossRef]
- Raj, R.; Morozov, Y.; Calado, L.M.; Taryba, M.G.; Kahraman, R.; Shakoor, A.; Montemor, M.F. Inhibitor loaded calcium carbonate microparticles for corrosion protection of epoxy-coated carbon steel. Electrochim. Acta 2019, 319, 801–812. [Google Scholar]
- Song, D.; Hao, J.; Yang, F.; Chen, H.; Liang, N.; Wu, Y.; Zhang, J.; Ma, H.; Klu, E.E.; Gao, B.; et al. Corrosion behavior and mechanism of Cr–Mo alloyed steel: Role of ferrite/bainite duplex microstructure. J. Alloys Compd. 2019, 809, 151787. [Google Scholar] [CrossRef]
- Duarte, R.G.; Castela, A.S.; Neves, R.; Freire, L.; Montemor, M.F. Corrosion behavior of stainless steel rebars embedded in concrete: An electrochemical. impedance spectroscopy study. Electrochim. Acta 2014, 124, 218–224. [Google Scholar] [CrossRef]
- Feng, H.; Li, H.; Wu, X.; Jiang, Z.; Zhao, S.; Zhang, T.; Xu, D.; Zhang, S.; Zhu, H.; Zhang, B.; et al. Effect of nitrogen on corrosion behaviour of a novel high nitrogen medium-entropy alloy CrCoNiN manufactured by pressurized metallurgy. J. Mater. Sci. Technol. 2018, 34, 1781–1790. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Niu, D.; Wen, B.; Peng, G.; Sun, Z. Corrosion behavior of low alloy steel bars containing Cr and Al in coral concrete for ocean construction. Constr. Build. Mater. 2020, 258, 119564. [Google Scholar] [CrossRef]
- Jin, Z.; Xiong, C.; Zhao, T.; Du, Y.; Zhang, X.; Li, N.; Yu, Y.; Wang, P. Passivation and depassivation properties of Cr–Mo alloyed corrosion-resistant steel in simulated concrete pore solution. Cem. Concr. Compos. 2022, 126, 104375. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, J.; Tang, M.; Zhang, X.; Wu, K. Role of rare earth elements on the improvement of corrosion resistance of micro-alloyed steels in 3.5 wt.% NaCl solution. J. Mater. Res. Technol. 2021, 11, 519–534. [Google Scholar] [CrossRef]
- Ai, Z.; Jiang, J.; Sun, W.; Jiang, X.; Yu, B.; Wang, K.; Zhang, Z.; Song, D.; Ma, H.; Zhang, J. Enhanced passivation of alloy corrosion-resistant steel Cr10Mo1 under carbonation—Passive film formation, the kinetics and mechanism analysis. Cem. Concr. Compos. 2018, 92, 178–187. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Q.; Hao, J.; Zou, G.; Zhang, P.; Wang, G.; Ai, Z.; Chen, H.; Ma, H.; Song, D. Corrosion resistance and corrosion interface characteristics of Cr-alloyed rebar based on accelerated corrosion testing with impressed current. J. Mater. Res. Technol. 2023, 22, 2996–3009. [Google Scholar] [CrossRef]
- Zhang, L.; He, B.; Wang, S.; Wang, G.; Yuan, X. Ecofriendly ultrasonic rust removal: An empirical optimization based on response surface methodology. Coatings 2021, 11, 1127. [Google Scholar] [CrossRef]
- Pour-Ali, S.; Kiani-Rashid, A.R.; Babakhani, A.; Virtanen, S.; Allieta, M. Correlation between the surface coverage of severe shot peening and surface microstructural evolutions in AISI 321: A TEM, FE-SEM and GI-XRD study. Surf. Coat. Technol. 2018, 334, 461–470. [Google Scholar] [CrossRef]
- Rudawska, A.; Danczak, I.; Muller, M.; Valasek, P. The effect of sandblasting on surface properties for adhesion. Int. J. Adhes. Adhes. 2016, 70, 176–190. [Google Scholar] [CrossRef]
- Gupta, R.K.; Birbilis, N. The influence of nanocrystalline structure and processing route on corrosion of stainless steel: A review. Corros. Sci. 2015, 92, 1–15. [Google Scholar] [CrossRef]
- Morshed-Behbahani, K.; Zakerin, N. A review on the role of surface nanocrystallization in corrosion of stainless steel. J. Mater. Res. Technol. 2022, 19, 1120–1147. [Google Scholar] [CrossRef]
- Kitahara, H.; Yada, T.; Hashiguchi, F.; Tsushida, M.; Ando, S. Mg alloy sheets with a nanocrystalline surface layer fabricated by wire-brushing. Surf. Coat. Technol. 2014, 243, 28–33. [Google Scholar] [CrossRef]
- Pan, C.; Liu, L.; Li, Y.; Wang, S.; Wang, F. Passive film growth mechanism of nanocrystalline 304 stainless steel prepared by magnetron sputtering and deep rolling techniques. Electrochim. Acta. 2011, 56, 7740–7748. [Google Scholar] [CrossRef]
- Song, D.; Ma, A.; Sun, W.; Jiang, J.; Jiang, J.; Yang, D.; Guo, G. Improved corrosion resistance in simulated concrete pore solution of surface nanocrystallized rebar fabricated by wire-brushing. Corros. Sci. 2014, 82, 437–441. [Google Scholar] [CrossRef]
- Gui, Y.; Zheng, Z.J.; Gao, Y. The bi-layer structure and the higher compactness of a passive film on nanocrystalline 304 stainless steel. Thin Solid Films 2016, 599, 64–71. [Google Scholar] [CrossRef]
- Stefanoni, M.; Angst, U.; Elsener, B. Local electrochemistry of reinforcement steel—Distribution of open circuit and pitting potentials on steels with different surface condition. Corros. Sci. 2015, 98, 610–618. [Google Scholar] [CrossRef]
- Hussain, R.R.; Al-Negheimish, A.; Alhozaimy, A.; Singh, D.D.N. Corrosion characteristics of vanadium micro-alloyed steel reinforcement bars exposed in concrete environments and industrially polluted atmosphere. Cem. Concr. Compos. 2020, 113, 103728. [Google Scholar] [CrossRef]
- Wang, G.; Song, D.; Qiao, Y.; Cheng, J.; Liu, H.; Jiang, J.; Ma, A.; Ma, X. Developing super-hydrophobic and corrosion-resistant coating on magnesium-lithium alloy via one-step hydrothermal processing. J. Magnes. Alloys 2021, 107, 197–206. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, X.; Cao, Y.; Yang, H. Natural passivation behavior and its influence on chloride-induced corrosion resistance of stainless steel in simulated concrete pore solution. J. Mater. Res. Technol. 2020, 9, 12378–12390. [Google Scholar] [CrossRef]
- Wang, M.; Shu, Q.; Shi, Y.; Teng, C.; Wang, J.; Jin, S.; Chen, S.; Qin, J.; Wang, D. Fabrication of hydrophobic AlCoCrFeNi high-entropy alloy and superior corrosion resistance to NTO aqueous solution. J. Alloys Compd. 2022, 915, 165394. [Google Scholar] [CrossRef]
- Zhang, F.; Li, X.; Deng, S.; Tang, M.; Du, G. Amphoteric surfactant of octadecyl dimethyl betaine as an efficient corrosion inhibitor for cold rolled steel in phosphoric acid solution. J. Alloys Compd. 2021, 15, 7050–7069. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Z.; Qiao, Y.; Zheng, Y. Synergistic effects of deposits and sulfate reducing bacteria on the corrosion of carbon steel. Corros. Sci. 2022, 199, 110210. [Google Scholar] [CrossRef]
- Zuo, J.; Wu, B.; Luo, C.; Dong, B.; Xing, F. Preparation of MgAl layered double hydroxides intercalated with nitrite ions and corrosion protection of steel bars in simulated carbonated concrete pore solution. Corros. Sci. 2019, 152, 120–129. [Google Scholar] [CrossRef]
- Zheng, Z.; Long, J.; Guo, Y.; Li, H.; Zheng, K.; Qiao, Y. Corrosion and impact–abrasion–corrosion behaviors of quenching–tempering martensitic Fe–Cr alloy steels. J. Iron Steel Res. Int. 2022, 29, 1853–1863. [Google Scholar] [CrossRef]
- Jiang, S.; Jiang, L.; Wang, Z.; Jin, M.; Bai, S.; Song, S.; Yan, X. Deoxyribonucleic acid as an inhibitor for chloride-induced corrosion of reinforcing steel in simulated concrete pore solutions. Constr. Build. Mater. 2017, 150, 238–247. [Google Scholar] [CrossRef]
- Anitha, R.; Chitra, S.; Hemapriya, V.; Chung, I.M.; Kim, S.H.; Prabakaran, M. Implications of eco-addition inhibitor to mitigate corrosion in reinforced steel embedded in concrete. Constr. Build. Mater. 2019, 213, 246–256. [Google Scholar] [CrossRef]
- Burduhos-Nergis, D.P.; Vizureanu, P.; Sandu, A.V.; Bejinariu, C. Phosphate surface treatment for improving the corrosion resistance of the C45 carbon steel used in carabiners manufacturing. Materials 2020, 13, 3410. [Google Scholar] [CrossRef]
- Grosvenor, A.P.; Kobe, B.A.; Biesinger, M.C.; McIntyre, N.S. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004, 36, 1564–1574. [Google Scholar] [CrossRef]
- Grosvenor, A.P.; Kobe, B.A.; McIntyre, N.S. Studies of the oxidation of iron by water vapour using X-ray photoelectron. spectroscopy and QUASES™. Surf. Sci. 2004, 572, 217–227. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]
- Feng, X.; Lu, X.; Zuo, Y.; Chen, D. The passive behaviour of 304 stainless steels in saturated calcium hydroxide solution under different deformation. Corros. Sci. 2014, 82, 347–355. [Google Scholar] [CrossRef]
- Luo, H.; Su, H.; Li, B.; Ying, G. Electrochemical and passive behaviour of tin alloyed ferritic stainless steel in concrete environment. Appl. Surf. Sci. 2018, 439, 232–239. [Google Scholar] [CrossRef]
- Ding, J.; Zhang, L.; Lu, M.; Wang, J.; Wen, Z.; Hao, W. The electrochemical behaviour of 316L austenitic stainless steel in Cl- containing environment under different H2S partial pressures. Appl. Surf. Sci. 2014, 289, 33–41. [Google Scholar] [CrossRef]
- Yang, S.; Li, C.; Chen, A.; Gan, B.; Gu, J. Microstructure and corrosion resistance of stainless steel manufactured by laser melting deposition. J. Manuf. Process. 2021, 65, 418–427. [Google Scholar] [CrossRef]
- Yilmaz, A.; Traka, K.; Pletincx, S.; Hauffman, T.; Sietsma, J.; Gonzalez-Garcia, Y. Effect of microstructural defects on passive layer properties of interstitial free (IF) ferritic steels in alkaline environment. Corros. Sci. 2021, 182, 109271. [Google Scholar] [CrossRef]
- Tian, Y.; Dong, C.; Wang, G.; Cheng, X.; Li, X. The effect of nickel on corrosion behaviour of high-strength low alloy steel rebar in simulated concrete pore solution. Constr. Build. Mater. 2020, 246, 118462. [Google Scholar] [CrossRef]
- Santamaria, M.; Di Franco, F.; Di Quarto, F.; Pisarek, M.; Zanna, S.; Marcus, P. Photoelectrochemical and XPS characterisation of oxide layers on 316L stainless steel grown in high-temperature water. J. Solid State Electrochem. 2015, 19, 3511–3519. [Google Scholar] [CrossRef]
- Qiao, Y.; Wang, X.; Yang, L.; Wang, X.; Chen, J.; Wang, Z.; Zhou, H.; Zou, J.; Wang, F. Effect of aging treatment on microstructure and corrosion behavior of a Fe-18Cr-15Mn-0.66N stainless steel. J. Mater. Sci. Technol. 2022, 107, 197–206. [Google Scholar] [CrossRef]
- Yang, X.; Yang, Y.; Sun, M.; Jia, J.; Cheng, X.; Pei, Z.; Li, Q.; Xu, D.; Xiao, K.; Li, X. A new understanding of the effect of Cr on the corrosion resistance evolution of weathering steel based on big data technology. J. Mater. Sci. Technol. 2022, 104, 67–80. [Google Scholar] [CrossRef]
- Cheng, H.; Luo, H.; Wang, X.; Pan, Z.; Jiang, Y.; Li, X. Electrochemical corrosion and passive behavior of a new high-nitrogen austenitic stainless steel in chloride environment. Mater. Chem. Phys. 2022, 292, 126837. [Google Scholar] [CrossRef]
- Afshari, V.; Dehghanian, C. Effects of grain size on the electrochemical corrosion behaviour of electrodeposited nanocrystalline Fe coatings in alkaline solution. Corros. Sci. 2009, 51, 1844–1849. [Google Scholar] [CrossRef]
- Xue, L.; Ding, Y.; Pradeep, K.G.; Case, R.; Castaneda, H.; Paredes, M. The grain size effect on corrosion property of Al2Cr5Cu5Fe53Ni35 high-entropy alloy in marine environment. Corros. Sci. 2022, 208, 110625. [Google Scholar] [CrossRef]
- Wang, P.; Ma, L.; Cheng, X.; Li, X. Influence of grain refinement on the corrosion behavior of metallic materials: A review. Int. J. Miner. Metall. Mater. 2021, 28, 1112–1126. [Google Scholar] [CrossRef]
- Li, T.; Liu, L.; Zhang, B.; Li, Y.; Yan, F.; Tao, N.; Wang, F. Passive behavior of a bulk nanostructured 316L austenitic stainless steel consisting of nanometer-sized grains with embedded nano-twin bundles. Corros. Sci. 2014, 85, 331–342. [Google Scholar] [CrossRef]
- Li, T.; Liu, L.; Zhang, B.; Li, Y.; Wang, X.; Wang, F. Direct observation of thin membrane passive film over the growing pit on sputtered nanocrystalline austenitic stainless steel film. Electrochem. Commun. 2015, 52, 80–84. [Google Scholar] [CrossRef]
- Wang, X.; Li, D. Mechanical and electrochemical behavior of nanocrystalline surface of 304 stainless steel. Electrochim. Acta 2002, 47, 3939–3947. [Google Scholar] [CrossRef]
- Liu, L.; Li, Y.; Wang, F. Electrochemical corrosion behavior of nanocrystalline materials—A review. J. Mater. Sci. Technol. 2010, 26, 1–14. [Google Scholar] [CrossRef]
Chemical Composition | C | Si | Mn | P | S | V | Cr | Mo | Fe |
---|---|---|---|---|---|---|---|---|---|
Measured (wt.%) | 0.02 | 0.49 | 1.49 | 0.01 | 0.01 | 0.05 | 10.06 | 1.26 | Balance |
Samples | Rs (Ω·cm2) | Rf (kΩ·cm2) | Yf (10−4Ω−1· cm−2·sn) | nf | Rct (kΩ·cm2) | Ydl (10−4Ω−1·cm−2·sn) | ndl | L (10−5H) | Chi Square (10−4) | |
---|---|---|---|---|---|---|---|---|---|---|
Passivation state | Scaled | 8.6 | 1.26 | 4.26 | 0.90 | 82.6 | 7.43 | 0.56 | / | 15.12 |
Rusted | 7.6 | 0.91 | 8.79 | 0.91 | 285.3 | 7.03 | 0.49 | 7.292 | 8.27 | |
SNC | 9.5 | 2.665 | 3.68 | 0.94 | 395.2 | 5.37 | 0.74 | / | 4.99 | |
Corrosion state | Scaled | 6.3 | 1.08 | 5.46 | 0.78 | 54.2 | 10.14 | 0.47 | / | 8.69 |
Rusted | 9.7 | 0.69 | 10.78 | 0.68 | 184.5 | 13.54 | 0.34 | 6.814 | 3.11 | |
SNC | 5.9 | 2.1 | 4.6 | 0.85 | 259.1 | 7.56 | 0.65 | / | 6.14 |
Samples | Ecorr (VSCE) | Epit (VSCE) | ||||
---|---|---|---|---|---|---|
rusted rebar | −0.209 | 0.214 0.007 | 2.582 0.045 | 2.511 0.058 | 3.060 0.068 | 5.473 0.129 |
scaled rebar | −0.367 0.012 | 0.296 0.009 | 0.761 | 0.656 0.027 | 0.799 0.034 | 135.14 5.810 |
SNC rebar | −0.307 0.017 | 0.334 0.010 | 0.469 0.018 | 0.455 0.013 | 0.554 0.016 | 746.24 21.70 |
Sample | Sputtering Depth (nm) | Crmet | Cr2O3 | CrOOH | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Peak | FWHM | Ratio | Peak | FWHM | Ratio | Peak | FWHM | Ratio | ||
Substrate | 0 | 574.3 | 2.11 | 7.21 | 576.2 | 1.41 | 50.82 | 577.3 | 1.45 | 41.97 |
6 | 574.3 | 1.34 | 33.05 | 576.1 | 1.48 | 37.50 | 577.3 | 1.52 | 29.45 | |
12 | 574.3 | 1.24 | 48.11 | 576.1 | 1.69 | 31.05 | 577.4 | 1.55 | 20.84 | |
18 | 574.3 | 1.33 | 55.88 | 576.2 | 1.53 | 26.92 | 577.5 | 1.80 | 17.19 | |
24 | 574.3 | 1.13 | 63.28 | 576.2 | 1.68 | 29.54 | 577.5 | 1.06 | 7.19 | |
SNC | 0 | 574.3 | 2.38 | 3.09 | 576.2 | 1.49 | 51.14 | 577.4 | 1.52 | 45.77 |
6 | 574.3 | 1.36 | 24.41 | 576.2 | 1.64 | 43.15 | 577.5 | 1.69 | 32.44 | |
12 | 574.3 | 1.38 | 44.31 | 576.1 | 1.77 | 29.44 | 577.2 | 1.96 | 26.24 | |
18 | 574.3 | 1.43 | 55.07 | 576.2 | 1.87 | 23.54 | 577.3 | 1.45 | 21.39 | |
24 | 574.3 | 1.41 | 62.94 | 576.2 | 1.87 | 27.43 | 577.5 | 1.52 | 9.63 |
Sample | Sputtering Depth (nm) | Femet | FeO | Fe2O3 | FeOOH | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Peak | FWHM | Ratio | Peak | FWHM | Ratio | Peak | FWHM | Ratio | Peak | FWHM | Ratio | ||
Substrate | 0 | 706.7 | 0.76 | 27.34 | 707.4 | 0.89 | 15.24 | 708.6 | 1.65 | 12.81 | 710.6 | 2.45 | 44.61 |
6 | 706.7 | 0.74 | 35.33 | 707.4 | 1.01 | 26.50 | 708.8 | 1.67 | 18.60 | 710.5 | 2.13 | 19.57 | |
12 | 706.7 | 0.75 | 37.67 | 707.4 | 0.92 | 24.12 | 708.4 | 1.57 | 17.56 | 710.3 | 2.81 | 20.65 | |
18 | 706.7 | 0.88 | 51.60 | 707.6 | 1.05 | 26.57 | 708.9 | 1.45 | 12.77 | 710.5 | 1.96 | 9.06 | |
24 | 706.7 | 0.80 | 46.58 | 707.5 | 0.93 | 26.20 | 708.6 | 1.42 | 15.09 | 710.3 | 2.03 | 12.13 | |
SNC | 0 | 706.7 | 0.62 | 15.87 | 707.4 | 0.78 | 9.48 | 708.5 | 1.25 | 6.87 | 710.7 | 3.41 | 67.78 |
6 | 706.6 | 0.74 | 33.82 | 707.3 | 0.80 | 18.82 | 708.2 | 1.61 | 20.86 | 710.0 | 2.06 | 26.50 | |
12 | 706.7 | 0.75 | 36.68 | 707.4 | 0.95 | 24.34 | 708.4 | 1.64 | 17.93 | 710.1 | 2.24 | 21.05 | |
18 | 706.7 | 0.76 | 38.21 | 707.3 | 0.91 | 24.04 | 708.2 | 1.41 | 18.92 | 709.9 | 2.04 | 18.83 | |
24 | 706.7 | 0.76 | 41.21 | 707.4 | 0.88 | 24.04 | 708.3 | 1.34 | 16.08 | 709.9 | 1.95 | 18.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Wang, Q.; Zou, G.; Klu, E.E.; Ai, Z.; Yang, F.; Liang, N.; Gu, L.; Gao, B.; Lian, B.; et al. Revealing the Enhanced Passivation and Anti-Corrosion Performance of Surface-Nanocrystallization-Modified Cr-Alloyed Rebar via Electrochemical Testing and XPS Depth Analysis. Coatings 2023, 13, 192. https://doi.org/10.3390/coatings13010192
Liu W, Wang Q, Zou G, Klu EE, Ai Z, Yang F, Liang N, Gu L, Gao B, Lian B, et al. Revealing the Enhanced Passivation and Anti-Corrosion Performance of Surface-Nanocrystallization-Modified Cr-Alloyed Rebar via Electrochemical Testing and XPS Depth Analysis. Coatings. 2023; 13(1):192. https://doi.org/10.3390/coatings13010192
Chicago/Turabian StyleLiu, Weilin, Qiuyue Wang, Gongnian Zou, Edwin Eyram Klu, Zhiyong Ai, Falin Yang, Ningning Liang, Lei Gu, Bo Gao, Beibei Lian, and et al. 2023. "Revealing the Enhanced Passivation and Anti-Corrosion Performance of Surface-Nanocrystallization-Modified Cr-Alloyed Rebar via Electrochemical Testing and XPS Depth Analysis" Coatings 13, no. 1: 192. https://doi.org/10.3390/coatings13010192
APA StyleLiu, W., Wang, Q., Zou, G., Klu, E. E., Ai, Z., Yang, F., Liang, N., Gu, L., Gao, B., Lian, B., Chen, Y., & Song, D. (2023). Revealing the Enhanced Passivation and Anti-Corrosion Performance of Surface-Nanocrystallization-Modified Cr-Alloyed Rebar via Electrochemical Testing and XPS Depth Analysis. Coatings, 13(1), 192. https://doi.org/10.3390/coatings13010192