Statistical Study of the Effectiveness of Surface Application of Graphene Oxide as a Coating for Concrete Protection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Hardened Concrete
2.1.2. Graphene Oxide
Synthesis of GO
2.2. Treatment
2.3. Experimental Design
2.4. Methods
2.4.1. Depth of Water Penetration under Pressure
2.4.2. Water Absorption by Capillarity
2.4.3. Resistance to Freezing/Thawing with De-Icing Salts
2.4.4. Resistance to Carbonation at Atmospheric Levels of CO2
2.4.5. Statistical Analysis
3. Results and Discussion
3.1. Depth of Penetration of Water under Pressure
3.2. Capillary Absorption
3.3. Freeze/Thaw Resistance
3.4. Resistance to Carbonation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Basheer, P.A.M.; Chidiact, S.E.; Long, A.E.; Basheer, M. Predictive models for deterioration of concrete structures. Constr. Build. Mater. 1996, 10, 27–37. [Google Scholar] [CrossRef]
- Grosek, J.; Zavrel, T.; Stryk, J. Mitigation Possibilities of Concrete Pavement Degradation. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1039, 012018. [Google Scholar] [CrossRef]
- Tittarelli, F.; Moriconi, G. Comparison between surface and bulk hydrophobic treatment against corrosion of galvanized reinforcing steel in concrete. Cem. Concr. Res. 2011, 41, 609–614. [Google Scholar] [CrossRef]
- Almusallam, A.; Khan, F.; Dulaijan, S.; Al-Amoudi, O. Effectiveness of surface coatings in improving concrete durability. Cem. Concr. Compos. 2003, 25, 473–481. [Google Scholar] [CrossRef]
- Polder, R.B.; Peelen, W.H.A.; Stoop, B.T.J.; Neeft, E.A.C. Early stage beneficial effects of cathodic protection in concrete structures. Mater. Corros. 2010, 62, 105–110. [Google Scholar] [CrossRef]
- Teng, S.; Lim, T.Y.D.; Divsholi, B.S. Durability and mechanical properties of high strength concrete incorporating ultra fine Ground Granulated Blast-furnace Slag. Constr. Build. Mater. 2012, 40, 875–881. [Google Scholar] [CrossRef]
- De Vries, I.J.; Polder, R. Hydrophobic treatment of concrete. Constr. Build. Mater. 1997, 11, 259–265. [Google Scholar] [CrossRef]
- Gupta, A.; Srivastava, C. Correlation between microstructure and corrosion behaviour of SnBi-graphene oxide composite coatings. Surf. Coatings Technol. 2019, 375, 573–588. [Google Scholar] [CrossRef]
- Sánchez, M.; Faria, P.; Ferrara, L.; Horszczaruk, E.; Jonkers, H.; Kwiecień, A.; Mosa, J.; Peled, A.; Pereira, A.; Snoeck, D.; et al. External treatments for the preventive repair of existing constructions: A review. Constr. Build. Mater. 2018, 193, 435–452. [Google Scholar] [CrossRef] [Green Version]
- Leung, C.K.; Zhu, H.G.; Kim, J.K.; Woo, R.S. Use of Polymer/Organoclay Nanocomposite Surface Treatment as Water/Ion Barrier for Concrete. J. Mater. Civ. Eng. 2008, 20, 484–492. [Google Scholar] [CrossRef]
- Sánchez, M.; Alonso, M.; González, R. Preliminary attempt of hardened mortar sealing by colloidal nanosilica migration. Constr. Build. Mater. 2014, 66, 306–312. [Google Scholar] [CrossRef]
- Fajardo, G.; Cruz-López, A.; Cruz-Moreno, D.; Valdez, P.; Torres, G.; Zanella, R. Innovative application of silicon nanoparticles (SN): Improvement of the barrier effect in hardened Portland cement-based materials. Constr. Build. Mater. 2015, 76, 158–167. [Google Scholar] [CrossRef]
- Franzoni, E.; Pigino, B.; Pistolesi, C. Ethyl silicate for surface protection of concrete: Performance in comparison with other inorganic surface treatments. Cem. Concr. Compos. 2013, 44, 69–76. [Google Scholar] [CrossRef]
- Sandrolini, F.; Franzoni, E.; Pigino, B. Ethyl silicate for surface treatment of concrete—Part I: Pozzolanic effect of ethyl silicate. Cem. Concr. Compos. 2012, 34, 306–312. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, B.; Zhang, Y.; Liu, L.; Song, J.; Hu, R.; Qu, J. In-situ reduction and deposition of Ag nanoparticles on black phosphorus nanosheets co-loaded with graphene oxide as a broad spectrum photocatalyst for enhanced photocatalytic performance. J. Alloy Compd. 2018, 769, 316–324. [Google Scholar] [CrossRef]
- Zhang, C.; Dai, X.; Wang, Y.; Sun, G.; Li, P.; Qu, L.; Sui, Y.; Dou, Y. Preparation and Corrosion Resistance of ETEO Modified Graphene Oxide/Epoxy Resin Coating. Coatings 2019, 9, 46. [Google Scholar] [CrossRef] [Green Version]
- Hou, D.; Wu, C.; Yin, B.; Hua, X.; Xu, H.; Wang, X.; Li, S.; Zhou, Y.; Jin, Z.; Xu, W.; et al. Investigation of composite silane emulsion modified by in-situ functionalized graphene oxide for cement-based materials. Constr. Build. Mater. 2021, 304, 124662. [Google Scholar] [CrossRef]
- Li, S.; Liu, J.; Geng, Y.; Liu, A.; Xu, A.; Hou, D.; Lang, X. Efficacy and mechanism of GO/IBTS coating against microbial fouling of concrete surfaces in marine tidal areas. J. Coatings Technol. Res. 2022, 19, 875–885. [Google Scholar] [CrossRef]
- Liu, X.; Jie, H.; Liu, R.; Liu, Y.; Li, T.; Lyu, K. Research on the Preparation and Anticorrosion Properties of EP/CeO2-GO Nanocomposite Coating. Polymers 2021, 13, 183. [Google Scholar] [CrossRef]
- Sharma, N.; Sharma, S.; Sharma, S.K.; Mahajan, R.L.; Mehta, R. Evaluation of corrosion inhibition capability of graphene modified epoxy coatings on reinforcing bars in concrete. Constr. Build. Mater. 2022, 322, 126495. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Dommett, G.H.B.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature 2006, 442, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Korayem, A.H.; Ghoddousi, P.; Javid, A.S.; Oraie, M.; Ashegh, H. Graphene oxide for surface treatment of concrete: A novel method to protect concrete. Constr. Build. Mater. 2020, 243, 118229. [Google Scholar] [CrossRef]
- González-Campelo, D.; Fernández-Raga, M.; Gómez-Gutiérrez, Á.; Guerra-Romero, M.I.; González-Domínguez, J.M. Extraordinary Protective Efficacy of Graphene Oxide over the Stone-Based Cultural Heritage. Adv. Mater. Interfaces 2021, 8, 2101012. [Google Scholar] [CrossRef]
- Park, S.; Dikin, D.A.; Nguyen, S.T.; Ruoff, R.S. Graphene Oxide Sheets Chemically Cross-Linked by Polyallylamine. J. Phys. Chem. C 2009, 113, 15801–15804. [Google Scholar] [CrossRef]
- EN 197-1; Cement. Part 1: Composition, Specifications and Conformity Criteria for Common Cements. CEN: Brussels, Belgium, 2011.
- CEN. EN 12620+A1; Aggregates for Concrete. CEN: Brussels, Belgium, 2014.
- UNE-EN 1992-1-1:2013; Eurocode 2: Design of Concrete Structures—Part 1-1: General Rules and Rules for Buildings. AENOR: Madrid, Spain, 1992.
- Arredondo, F. Dosificación de Hormigones, 3rd ed.; Series Manuales y Normas Del Instituto de Las Ciencias de La Construcción Eduardo Torroja; Instituto Eduardo Torroja de la Construccion y del Cemento: Madrid, Spain, 1968. [Google Scholar]
- EN 12390-8; Testing Hardened Concrete-Part 8: Depth of Water Penetration under Pressure. CEN: Brussels, Belgium, 2020.
- UNE 12390-6; Test on Hardened Concrete. Part 6: Indirect Tensile Strength of Specimens. AENOR: Madrid, Spain, 2010.
- UNE 83982; Durability of Concrete. Test Methods. Determination of Water Absorption by Capillary Action of Hardened Concrete. Fagerlund Method. AENOR: Madrid, Spain, 2008.
- UNE 83966; Durability of Concrete. Test Methods. Conditioning of Concrete Specimens for Gas Permeability and Capillarity Tests. AENOR: Madrid, Spain, 2008.
- CEN. EN 1339; Concrete Paving Flags-Requirements and Test Methods. CEN: Brussels, Belgium, 2004.
- CEN. EN 12390-10; Determination of the Carbonation Resistance of Concrete at Atmospheric Carbon Dioxide Levels. CEN: Brussels, Belgium, 2019.
Components (Quantity/m3) | Conventional Concrete |
---|---|
Gravel (kg) | 1030.7 |
Sand (kg) | 650.5 |
Cement (kg) | 390.0 |
Water (L) | 198.0 |
Treatment Levels (Coating) | GO Content (µg·cm2) |
---|---|
CC | 0.0 |
1-GO coating | 26.2 |
2-GO coatings | 52.4 |
3-GO coatings | 78.6 |
4-GO coatings | 104.8 |
5-GO coatings | 131.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antolín-Rodríguez, A.; Merino-Maldonado, D.; Rodríguez-González, Á.; Fernández-Raga, M.; González-Domínguez, J.M.; Juan-Valdés, A.; García-González, J. Statistical Study of the Effectiveness of Surface Application of Graphene Oxide as a Coating for Concrete Protection. Coatings 2023, 13, 213. https://doi.org/10.3390/coatings13010213
Antolín-Rodríguez A, Merino-Maldonado D, Rodríguez-González Á, Fernández-Raga M, González-Domínguez JM, Juan-Valdés A, García-González J. Statistical Study of the Effectiveness of Surface Application of Graphene Oxide as a Coating for Concrete Protection. Coatings. 2023; 13(1):213. https://doi.org/10.3390/coatings13010213
Chicago/Turabian StyleAntolín-Rodríguez, Andrea, Daniel Merino-Maldonado, Álvaro Rodríguez-González, María Fernández-Raga, José Miguel González-Domínguez, Andrés Juan-Valdés, and Julia García-González. 2023. "Statistical Study of the Effectiveness of Surface Application of Graphene Oxide as a Coating for Concrete Protection" Coatings 13, no. 1: 213. https://doi.org/10.3390/coatings13010213
APA StyleAntolín-Rodríguez, A., Merino-Maldonado, D., Rodríguez-González, Á., Fernández-Raga, M., González-Domínguez, J. M., Juan-Valdés, A., & García-González, J. (2023). Statistical Study of the Effectiveness of Surface Application of Graphene Oxide as a Coating for Concrete Protection. Coatings, 13(1), 213. https://doi.org/10.3390/coatings13010213