Impact of Bulk and Nano Bismuth Oxide on the Attenuation Parameters of Bentonite Barite Composites
Abstract
:1. Introduction
2. Materials and Method
2.1. Materials
2.2. Samples Preparation
2.3. Morphology Test
2.4. Mechanical Properties
2.5. Radiation Measurements
2.6. Gamma-Ray Attenuation Characteristics
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mahmoud, K.; Sayyed, M.; Tashlykov, O. Comparative studies between the shielding parameters of concretes with different additive aggregates using MCNP-5 simulation code. Radiat. Phys. Chem. 2019, 165, 108426. [Google Scholar] [CrossRef]
- Kamislioglu, M. Research on the effects of bismuth borate glass system on nuclear radiation shielding parameters. Results Phys. 2021, 22, 103844. [Google Scholar] [CrossRef]
- Sazali, M.A.; Rashid, N.K.; Hamzah, K. A review on multilayer radiation shielding. IOP Conf. Ser. Mater. Sci. Eng 2019, 555, 012008. [Google Scholar] [CrossRef]
- Sikora, P.; El-Khayatt, A.M.; Saudi, H.M.; Chung, S.Y.; Stephan, D.; Abd Elrahman, M. Evaluation of the effects of bismuth oxide (Bi2O3) micro and nanoparticles on the mechanical, microstructural and c-ray/neutron shielding properties of Portland cement pastes. Constr. Build. Mater 2021, 284, 122758. [Google Scholar] [CrossRef]
- Ganguly, S.; Bhawal, P.; Ravindren, R.; Das, N.C. Polymer nanocomposites for electromagnetic interference shielding: A review. J. Nanosci. Nanotechnol. 2018, 18, 7641–7669. [Google Scholar] [CrossRef]
- Hayouni, Y.; Gallala, W.; Gaied, M.E.; Plank, J.; Bourham, M.; Alsmadi, Z.Y. Enhanced Shielding and Mechanical Properties of White Cement Mortars Via Celestobarite Fine Aggregate. Int. J. Eng. Technol. 2021, 10, 1–16. [Google Scholar]
- ALMisned, G.; Zakaly, H.M.H.; Issa, S.A.; Eng, A.; Kilic, G.; Bawazeer, O.; Almatar, A.; Shamsi, D.; Rabaa, E.; Sideig, Z. Gamma-Ray Protection Properties of Bismuth-Silicate Glasses against Some Diagnostic Nuclear Medicine Radioisotopes: A Comprehensive Study. Materials 2021, 14, 6668. [Google Scholar] [CrossRef]
- Zaid, M.H.M.; Matori, K.A.; Sidek, H.A.A.; Ibrahim, I.R. Bismuth modified gamma radiation shielding properties of titanium vanadium sodium tellurite glasses as a potent transparent radiation-resistant glass applications. Nucl. Eng. Technol. 2021, 53, 1323–1330. [Google Scholar] [CrossRef]
- Ganguly, S.; Das, P.; Saha, A.; Noked, M.; Gedanken, A.; Margel, S. Mussel-inspired polynorepinephrine/MXene-based magnetic nanohybrid for electromagnetic interference shielding in X-band and strain-sensing performance. Langmuir 2022, 38, 3936–3950. [Google Scholar] [CrossRef]
- Gallala, W.; Hayoun, Y.; Gaied, M.E.; Fusco, M.; Alsaied, J.; Bailey, K.; Bourham, M. Mechanical and radiation shielding properties of mortars with additive fne aggregate mine waste. Ann. Nucl. Energy 2017, 101, 600–606. [Google Scholar] [CrossRef]
- Ouda, A.S. Development of high-performance heavy-density concrete using different aggregates for gamma-ray shielding. Prog. Nucl. Energy 2015, 79, 48–55. [Google Scholar] [CrossRef]
- McConn, R.J.; Gesh, C.J.; Pagh, R.T.; Rucker, R.A.; Williams, R.G. Compendium of Material Composition Data for Radiation Transport Modeling; Homeland Security: Washington, DC, USA, 2011. [Google Scholar]
- Sallem, F.H.; Sayyed, M.I.; Aloraini, D.A.; Almuqrin, A.H.; Mahmoud, K.A. Characterization and Gamma-ray Shielding Performance of Calcinated and Ball-Milled Calcinated Bentonite Clay Nanoparticles. Crystals 2022, 12, 1178. [Google Scholar] [CrossRef]
- Al-Ghamdi, H.; Elsafi, M.; Almuqrin, A.H.; Yasmin, S.; Sayyed, M.I. Investigation of the Gamma-ray Shielding Performance of CuO-CdO-Bi2O3 Bentonite Ceramics. Materials 2022, 15, 5310. [Google Scholar] [CrossRef]
- Cheng, J.; Li, C.; Xiong, Y.; Zhang, H.; Raza, H.; Ullah, S.; Wu, J.; Zheng, G.; Cao, Q.; Zhang, D.; et al. Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials. Nano-Micro Lett. 2022, 14, 80. [Google Scholar] [CrossRef]
- Wang, X.Y.; Liao, S.Y.; Wan, Y.J.; Zhu, P.L.; Hu, Y.G.; Zhao, T.; Sun, R.; Wong, C.P. Electromagnetic interference shielding materials: Recent progress, structure design, and future perspective. J. Mater. Chem. C 2022, 10, 44–72. [Google Scholar] [CrossRef]
- Gouda, M.M. Calibration of NaI (Tl) Cylindrical Detector Using Axially Shifted Radioactive Cylindrical Sources. Nucl. Technol. Radiat. Prot. 2019, 34, 353–360. [Google Scholar] [CrossRef]
- Elsafi, M.; Alzahrani, J.S.; Abbas, M.I.; Gouda, M.M.; Thabet, A.A.; Badawi, M.S.; El-Khatib, A.M. Geant4 Tracks of NaI Cubic Detector Peak Efficiency, Including Coincidence Summing Correction for Rectangular Sources. Nucl. Sci. Eng. 2021, 195, 1008–1016. [Google Scholar] [CrossRef]
- Han, I.; Demir, L. Studies on effective atomic numbers, electron densities from mass attenuation coefficients in TixCo1−x and CoxCu1−x alloys. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2009, 267, 3505–3510. [Google Scholar] [CrossRef]
- Kurudirek, M. Heavy metal borate glasses: Potential use for radiation shielding. J. Alloys Compd. 2017, 727, 1227–1236. [Google Scholar] [CrossRef]
- Abouhaswa, A.S.; Mhareb, M.H.A.; Alalawi, A.; Al-Buriahi, M.S. Physical, structural, optical, and radiation shielding properties of B2O3-20Bi2O3-20Na2O2-Sb2O3 glasses: Role of Sb2O3. J. Non-Cryst. Solids 2020, 543, 120130. [Google Scholar] [CrossRef]
- Issa, S.A.M. Effective atomic number and mass attenuation coefficient of PbO–BaO–B2O3 glass system. Radiat. Phys. Chem. 2016, 120, 33–37. [Google Scholar] [CrossRef]
- Kaur, P.; Singh, K.; Kurudirek, M.; Thakur, S. Study of environment friendly bismuth incorporated lithium borate glass system for structural, gamma-ray and fast neutron shielding properties. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 223, 117309. [Google Scholar] [CrossRef]
- Al-Buriahi, M.S.; Arslan, H.; Tonguc, B.T. Investigation of photon energy absorption properties for some biomolecules. Nucl. Sci. Tech. 2019, 30, 103. [Google Scholar] [CrossRef]
- Hassan, H.E.; Badran, H.M.; Aydarous, A.; Sharshar, T. Studying the effect of nano lead compounds additives on the concrete shielding properties for γ-rays. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2015, 360, 81–89. [Google Scholar] [CrossRef]
- Nagaraja, N.; Manjunatha, H.C.; Seenappa, L.; Sridhar, K.N.; Ramalingam, H.B. Radiation shielding properties of silicon polymers. Radiat. Phys. Chem. 2020, 171, 108723. [Google Scholar] [CrossRef]
- Martin, A.; Harbison, S.; Beach, K.; Cole, P. An Intro-Duction to Radiation Protection, 6th ed.; CRC Press: Boca Raton, FL, USA, 2012; p. 256. [Google Scholar]
- Kaçal, M.R.; Akman, F.; Sayyed, M.I. Evaluation of gamma-ray and neutron attenuation properties of some polymers. Nucl. Eng. Technol. 2019, 51, 818–824. [Google Scholar] [CrossRef]
- El-Bashir, B.O.; Sayyed, M.I.; Zaid, M.H.M.; Matori, K.A. Comprehensive study on physical, elastic and shielding properties of ternary BaO-Bi2O3-P2O5 glasses as a potent radiation shielding material. J. Non-Cryst. Solids 2017, 468, 92–99. [Google Scholar] [CrossRef]
- Feng, L.; Li, S.; Feng, S. Preparation and characterization of silicone rubber with high modulus via tension spring-type crosslinking. RSC Adv. 2017, 7, 13130. [Google Scholar] [CrossRef]
- Sayyed, M.I.; Lakshminarayana, G.; Kityk, I.V.; Mahdi, M.A. Evaluation of shielding parameters for heavy metal fluoride based tellurite-rich glasses for gamma ray shielding applications. Radiat. Phys. Chem. 2017, 139, 33–39. [Google Scholar] [CrossRef]
- Sayyed, M.I.; Elmahroug, Y.; El-bashir, B.O.; Issa, S.A.M. Gamma-ray shielding properties of zinc oxide soda lime silica glasses. J. Mater. Sci. Mater. Electron. 2017, 28, 4064–4074. [Google Scholar] [CrossRef]
- Hosseini, S.H.; Askari, M.; Ezzati, S.N. X-ray attenuating nanocomposite based on polyaniline using Pb nanoparticles. Synth. Met. 2014, 196, 68–75. [Google Scholar] [CrossRef]
- Abbas, M.I.; El-Khatib, A.M.; Elsafi, M.; El-Shimy, S.N.; Dib, M.F.; Abdellatif, H.M.; Baharoon, R.; Gouda, M.M. Investigation of Gamma-Ray Shielding Properties of Bismuth Oxide Nanoparticles with a Bentonite–Gypsum Matrix. Materials 2023, 16, 2056. [Google Scholar] [CrossRef] [PubMed]
- Şakar, E. Determination of photon-shielding features and build-up factors of nickelesilver alloys. Radiat. Phys. Chem. 2020, 172, 108778. [Google Scholar] [CrossRef]
- Manohara, S.R.; Hanagodimath, S.M.; Gerward, L. Photon interaction and energy absorption in glass: A transparent gamma ray shield. J. Nucl. Mater. 2009, 393, 465–472. [Google Scholar] [CrossRef]
Sample Codes | Compositions (wt%) | Density (g/cm3) | |||
---|---|---|---|---|---|
Main Matrix | Bismuth Oxide (Bi2O3) | Micro | Nano | ||
Bentonite | Barite | ||||
BB-0 | 67 | 33 | 0 | 2.338 ± 0.012 | |
BB-1 | 27 | 6 | 2.584 ± 0.052 | 2.885 ± 0.013 | |
BB-2 | 20 | 13 | 2.815 ± 0.064 | 2.955 ± 0.089 | |
BB-3 | 61 | 33 | 6 | 2.911 ± 0.043 | 3.024 ± 0.054 |
BB-4 | 54 | 13 | 3.105 ± 0.023 | 3.291 ± 0.064 | |
BB-5 | 56.7 | 23.3 | 20 | 3.2547 ± 0.081 | 3.312 ± 0.072 |
Sample Code | Ultimate Force (Newton) | Ultimate Stress (MPa) | Break Distance (mm) |
---|---|---|---|
BB-0 | 2654.46 | 6.39 | 4.51 |
BB-1 Micro | 3868.55 | 9.31 | 6.73 |
BB-1 Nano | 3251.87 | 7.9 | 4.56 |
BB-2 Micro | 4737.5 | 11.4 | 2.93 |
BB-2 Nano | 1819.67 | 4.38 | 7.53 |
BB-3 Micro | 4333.33 | 10.43 | 2.99 |
BB-3 Nano | 4916.67 | 11.87 | 5 |
BB-4 Micro | 5161 | 12.42 | 1.85 |
BB-4 Nano | 4090.24 | 9.84 | 2.07 |
BB-5 Micro | 3615.33 | 8.7 | 3.84 |
BB-5 Nano | 3685.46 | 8.87 | 7.47 |
Sample Code/ Bi2O3wt% | Energy (keV) | Mass Attenuation Coefficient (cm2 g−1) | ||
---|---|---|---|---|
XCOM | Micro Bi2O3/ (Bentonite and Barite) | Δ% | ||
BB-0 0 wt% | 59.53 | 1.7310 | 1.7694 | 2.22 |
80.99 | 0.8142 | 0.7943 | −2.44 | |
356.01 | 0.1054 | 0.1060 | 0.61 | |
661.66 | 0.0760 | 0.0778 | 2.36 | |
1173.23 | 0.0570 | 0.0579 | 1.69 | |
1332.5 | 0.0534 | 0.0536 | 0.35 | |
BB-1 6 wt% | 59.53 | 1.7180 | 1.7391 | 1.23 |
80.99 | 0.8086 | 0.8277 | 2.37 | |
356.01 | 0.1136 | 0.1113 | −2.06 | |
661.66 | 0.0776 | 0.0772 | −0.59 | |
1173.23 | 0.0573 | 0.0588 | 2.58 | |
1332.5 | 0.0536 | 0.0535 | −0.28 | |
BB-2 13 wt% | 59.53 | 1.7030 | 1.6933 | −0.57 |
80.99 | 0.8021 | 0.7867 | −1.92 | |
356.01 | 0.1233 | 0.1206 | −2.20 | |
661.66 | 0.0795 | 0.0782 | −1.64 | |
1173.23 | 0.0577 | 0.0564 | −2.27 | |
1332.5 | 0.0539 | 0.0542 | 0.54 | |
BB-3 6 wt% | 59.53 | 1.9720 | 2.0176 | 2.31 |
80.99 | 0.9171 | 0.9179 | 0.09 | |
356.01 | 0.1148 | 0.1181 | 2.90 | |
661.66 | 0.0776 | 0.0777 | 0.16 | |
1173.23 | 0.0571 | 0.0581 | 1.78 | |
1332.5 | 0.0534 | 0.0537 | 0.49 | |
BB-4 13 wt% | 59.53 | 2.2560 | 2.3008 | 1.99 |
80.99 | 1.0370 | 1.0153 | −2.10 | |
356.01 | 0.1258 | 0.1255 | −0.25 | |
661.66 | 0.0794 | 0.0795 | 0.06 | |
1173.23 | 0.0573 | 0.0580 | 1.34 | |
1332.5 | 0.0535 | 0.0524 | −1.90 | |
BB-5 20 wt% | 59.53 | 2.1270 | 2.1972 | 3.30 |
80.99 | 0.9816 | 0.9703 | −1.15 | |
356.01 | 0.1349 | 0.1351 | 0.18 | |
661.66 | 0.0814 | 0.0801 | −1.58 | |
1173.23 | 0.0577 | 0.0587 | 1.65 | |
1332.5 | 0.0538 | 0.0528 | −1.80 |
Bi2O3 wt% | Energy (keV) | Linear Attenuation Coefficient (cm−1) | |
---|---|---|---|
Bentonite–Gypsum/Bi2O [34] | Bentonite–Barite/Bi2O3 | ||
6 wt% Bi2O3 | 59.53 | 1.3473 | 4.4937 |
80.99 | 0.7537 | 2.1389 | |
356.01 | 0.2705 | 0.2874 | |
20 wt% Bi2O3 | 59.53 | 3.1821 | 7.1512 |
80.99 | 1.5177 | 3.1581 | |
356.01 | 0.3767 | 0.4398 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, M.I.; Gouda, M.M.; EL-Shimy, S.N.; Dib, M.F.; Abdellatif, H.M.; Baharoon, R.; Elsafi, M.; El-Khatib, A.M. Impact of Bulk and Nano Bismuth Oxide on the Attenuation Parameters of Bentonite Barite Composites. Coatings 2023, 13, 1670. https://doi.org/10.3390/coatings13101670
Abbas MI, Gouda MM, EL-Shimy SN, Dib MF, Abdellatif HM, Baharoon R, Elsafi M, El-Khatib AM. Impact of Bulk and Nano Bismuth Oxide on the Attenuation Parameters of Bentonite Barite Composites. Coatings. 2023; 13(10):1670. https://doi.org/10.3390/coatings13101670
Chicago/Turabian StyleAbbas, Mahmoud I., Mona M. Gouda, Sarah N. EL-Shimy, Mirvat F. Dib, Hala M. Abdellatif, Raqwana Baharoon, Mohamed Elsafi, and Ahmed M. El-Khatib. 2023. "Impact of Bulk and Nano Bismuth Oxide on the Attenuation Parameters of Bentonite Barite Composites" Coatings 13, no. 10: 1670. https://doi.org/10.3390/coatings13101670
APA StyleAbbas, M. I., Gouda, M. M., EL-Shimy, S. N., Dib, M. F., Abdellatif, H. M., Baharoon, R., Elsafi, M., & El-Khatib, A. M. (2023). Impact of Bulk and Nano Bismuth Oxide on the Attenuation Parameters of Bentonite Barite Composites. Coatings, 13(10), 1670. https://doi.org/10.3390/coatings13101670