Research on Nano-Titanium Modified Phenolic Resin Coating and Corrosion Resistance
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of Nano-Titanium Modified Phenolic Resin
2.3. Preparation of Coatings
2.4. Structural Characterizations and Performance Testing
3. Results and Discussion
3.1. Scanning Electron Microscope and X-ray Spectroscopy Analysis
3.2. Fourier Transform Infrared Spectroscopy and Raman Spectrum Characterization
3.3. UV Spectrum Analysis
3.4. Electrochemical Performance of Coatings
3.5. Salt Spray Resistance Test
3.6. Adhesion Test
3.7. Anti-Corrosion Mechanism of Composite Coating
4. Conclusions
- (1)
- Through the comparative analysis of the corrosion resistance of Ti-PF coatings and pure PF coating, it was confirmed that the addition of nano-titanium could effectively enhance the corrosion resistance of pure PF coating, and the optimum addition amount of nano-titanium was determined to be 4%.
- (2)
- By comparing the adhesion of Ti-PF coatings and pure PF coating, it was confirmed that the addition of nano-titanium could improve the degree of adhesion of pure PF coatings, and all the Ti-PF coatings showed excellent adhesion.
- (3)
- The impedance value of the Ti-PF coatings was much larger than that of the pure PF coating, among which the impedance value of the 4% Ti-PF coatings was the largest; the 4% Ti-PF coatings were almost intact after 480 h of salt spray resistance test, which showed excellent corrosion resistance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The High Cost of Corrosion. Focus Powder Coat. 2019, 2019, 1. [CrossRef]
- Gnedenkov, A.S.; Sinebryukhov, S.L.; Filonina, V.S.; Plekhova, N.G.; Gnedenkov, S.V. Smart composite antibacterial coatings with active corrosion protection of magnesium alloys. J. Magnes. Alloys 2022, 10, 3589–3611. [Google Scholar] [CrossRef]
- Wang, G.G.; Wen, S.G.; Qin, S.P.; Wang, J.H.; Wang, C.R.; Chen, Y.B. Synthesis of novel nano hyperbranched polymer resin and its corrosion resistance in coatings. Prog. Org. Coat. 2020, 140, 105496. [Google Scholar] [CrossRef]
- Neto, A.G.C.; Pellanda, A.C.; Jorge, A.R.D.C. Preparation and evaluation of corrosion resistance of a self-healing alkyd coating based on microcapsules containing Tung oil. Prog. Org. Coat. 2020, 147, 105874. [Google Scholar] [CrossRef]
- Yao, H.; Zhang, X.; Shen, L.M.; Bao, Z.N. Tribological and anticorrosion properties of polyvinyl butyral (PVB) coating reinforced with phenol formaldehyde resin (PF). Prog. Org. Coat. 2021, 158, 106382. [Google Scholar] [CrossRef]
- Fan, X.G.; Xia, Y.Z.; Wu, S.; Zhang, D.; Oliver, S.S.; Chen, X.N.; Lei, L.; Shi, S.X. Covalently immobilization of modified graphene oxide with waterborne hydroxyl acrylic resin for anticorrosive reinforcement of its coatings. Prog. Org. Coat. 2022, 163, 106685. [Google Scholar] [CrossRef]
- Xue, D.; Meng, Q.B.; Lu, X.Y.; Ling, L.; Wei, H.Y.; Liu, B.L. Achieving high performance anticorrosive coating via in situ polymerization of polyurethane and poly(propylene oxide) grafted graphene oxide composites. Corros. Sci. 2020, 176, 109055. [Google Scholar] [CrossRef]
- Honarvar, N.M.; Zhang, Y.; Mahmoodi, A.; Xu, G.; Wu, L.J.; Shi, X.M. Nanocomposite organic coatings for corrosion protection of metals: A review of recent advances. Prog. Org. Coat. Int. Rev. J. 2022, 162, 106573. [Google Scholar] [CrossRef]
- El-Shamy, O.A.A.; Deyab, M.A. Novel anticorrosive coatings based on nanocomposites of epoxy, chitosan and silver. Mater. Lett. 2023, 330, 133298. [Google Scholar] [CrossRef]
- Li, W.; Sheng, Z.; He, D.M.; Cai, M.; He, C.; Fan, X.Q. Ti3C2@ZnO-reinforced interpenetrating polymer network coating toward harsh wear/corrosion protection. Tribol. Int. 2023, 188, 108877. [Google Scholar] [CrossRef]
- Kumar, S.S.A.; Ma, I.W.; Ramesh, K.; Ramesh, S. Development of graphene incorporated acrylic-epoxy composite hybrid anti-corrosion coatings for corrosion protection. Mater. Chem. Phys. 2023, 303, 127731. [Google Scholar] [CrossRef]
- Zhao, Y.M.; Zhang, P.Y.; Gu, X.Q.; Zhang, X.L.; Huo, M.D. Preparation of PVDF-PDMS-SiO2 multi-stage rough superhydrophobic coating with excellent anti-corrosion and drag reduction performance via one-step cold spraying. Surf. Coat. Technol. 2023, 471, 129882. [Google Scholar] [CrossRef]
- George, J.S.; Paduvilan, J.K.; Salim, N.; Sunarso, J.; Kalarikkal, N.; Hameed, N.; Thomas, S. Advances and future outlook in epoxy/graphene composites for anticorrosive applications. Prog. Org. Coat. 2022, 162, 106571. [Google Scholar] [CrossRef]
- Ammar, S.; Ramesh, K.; Ma IA, W.; Farah, Z.; Vengadaesvaran, B.; Ramesh, S.; Arof, A.K. Studies on SiO2-hybrid polymeric nanocomposite coatings with superior corrosion protection and hydrophobicity. Surf. Coat. Technol. 2017, 324, 536–545. [Google Scholar] [CrossRef]
- Tang, G.; Zhang, K.; Yan, Z.; Ma, L.; Huang, X. A self-curing, thermosetting resin based on epoxy and organic titanium chelate as an anticorrosive coating matrix for heat exchangers: Preparation and properties. Prog. Org. Coat. Int. Rev. J. 2017, 102, 225–230. [Google Scholar] [CrossRef]
- Wang, J.X.; Huan, Y.; Zhu, M.; Xie, B.Q.; Yu, X.R.; Su, G.H.; Wang, L. Epoxy coating with excellent anticorrosion and pH-responsive performances based on DEAEMA modified mesoporous silica nanomaterials. Colloids Surf. A Physicochem. Eng. Asp. 2021, 634, 127951. [Google Scholar] [CrossRef]
- Yao, H.R.; Li, L.J.; Li, W.S.; Qi, D.; Fu, W.L.; Wang, N. Application of nanomaterials in waterborne coatings: A review. Resour. Chem. Mater. 2022, 1, 184–200. [Google Scholar] [CrossRef]
- Zhao, H.R.; Ding, J.H.; Liu, P.L.; Yu, H.B. Boron nitride-epoxy inverse “nacre-like” nanocomposite coatings with superior anticorrosion performance. Corros. Sci. 2021, 183, 109333. [Google Scholar] [CrossRef]
- Chen, Y.X.; Bai, W.B.; Chen, J.P.; Zhao, J.; Wei, F.F.; Jian, R.K.; Zheng, X.X.; Xu, Y.L. In-situ intercalation of montmorillonite/urushiol titanium polymer nanocomposite for anti-corrosion and anti-aging of epoxy coatings. Prog. Org. Coat. 2022, 165, 106738. [Google Scholar] [CrossRef]
- Guo, H.; Yang, C.; Sun, H.; Xiang, N.; Li, C.; Wang, C. Silane coupling agent modified layered double hydroxide/graphene oxide preparation of intelligent anticorrosive coating. Surf. Coat. Technol. 2023, 467, 129728. [Google Scholar] [CrossRef]
- Lin, J.D.; Li, X.Q.; Chen, J.K. Synthesis and characterization of molybdenum/phenolic resin composites binding with aluminum nitride particles for diamond cutters. Appl. Surf. Sci. 2013, 284, 297–307. [Google Scholar] [CrossRef]
- Tang, K.H.; Zhang, A.L.; Ge, T.J.; Liu, X.F.; Tang, X.J.; Li, Y.J. Research progress on modification of phenolic resin. Mater. Today Commun. 2020, 26, 101879. [Google Scholar] [CrossRef]
- Wei, X.; Li, J.J.; Zhang, S.H.; Jiang, C.; Feng, Y.Y.; Zhao, J.; Lin, Z.X.; Huang, X.L.; Wang, T.; He, J.P. In situ synthesis of graphene-phenol formaldehyde composites and their highly-efficient radical scavenging effects under the γ irradiation. Corros. Sci. 2019, 159, 108139. [Google Scholar]
- Dai, Y.X.; Lv, F.N.; Wang, B.; Chen, Y. Thermoresponsive phenolic formaldehyde amines with strong intrinsic photoluminescence: Preparationcharacterization and application as hardeners in waterborne epoxy resin formulations. Polymer 2018, 145, 454–462. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, S.; Chen, M.Y.; Zhang, X.; Zhang, J.; Li, X.; Zhang, H.; Shen, X.L. The anticorrosion mechanism of phenolic conversion coating applied on magnesium implants. Appl. Surf. Sci. 2018, 463, 953–967. [Google Scholar] [CrossRef]
- Ambale, M.M.; Kikkeri, N.S.M.; Mahesh, B.H.; Saurav, R.N.; Kamalon, R.; Ningappa, K.S. Development of Al2O3.ZnO/GO-phenolic formaldehyde amine derivative nanocomposite: A new hybrid anticorrosion coating material for mild steel. Colloids Surf. A Physicochem. Eng. Asp. 2020, 601, 125036. [Google Scholar]
- Ashish, S.; Chavvakula, M.M.; Pravin, K.S.; Piyush, C.V. Titanium-based materials: Synthesis, properties, and applications. Mater. Proc. 2022, 56, 412–419. [Google Scholar]
- Pei, L.C.; Lin, D.; Wang, R.T.; Yuan, S.C.; Lu, R.J.; Li, H.Z.; Zhu, J.J.; Jiang, Y.X.; Deng, J.P.; Zhu, Y.J.; et al. Ti3C2Tx MXene@STPP novel waterborne long-term anti-corrosion coating with “3 + 1” multiple high-performance active-passive protection barrier mechanisms. Prog. Org. Coat. 2023, 184, 107874. [Google Scholar] [CrossRef]
- ISO 2409:2020; Paints and Varnishes—Cross-Cut Test. International Organization for Standardization: Genève, Switzerland, 2020.
- ISO 9227:2017; Corrosion Tests in Artificial Atmospheres—Salt Spray Tests. International Organization for Standardization: Genève, Switzerland, 2017.
- Xun, L.L.; Ren, J.; Lu, J.H.; Tong, X.Q.; Zhao, T.T.; Bang, L.T.; Shi, X.L. Preparation of double linked waterborne epoxy resin coating using Titanium curing agent and aminopropyltriethoxysilane and its anticorrosive properties. Int. J. Electrochem. Sci. 2021, 16, 210768. [Google Scholar]
- Wan, C.Y.; Chen, B.Q. Synthesis and characterization of biomimetic hydroxyapatite/sepiolite nanocomposites. Nanoscale 2011, 3, 693–700. [Google Scholar] [CrossRef]
- Tian, W.L.; Meng, F.D.; Liu, L.; Li, Y.; Wang, F.H. The failure behaviour of a commercial highly pigmented epoxy coating under marine alternating hydrostatic pressure. Prog. Org. Coat. 2015, 82, 101–112. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Z.Z.; Qiu, H.X.; Dai, Y.G.; Zheng, Q.B.; Li, J.; Yang, J.H. Self-aligned graphene as anticorrosive barrier in waterborne polyurethane composite coatings. J. Mater. Chem. A 2014, 2, 14139–14145. [Google Scholar] [CrossRef]
- Qiu, C.C.; Liu, D.M.; Jin, K.; Fang, L.; Sha, T.D. Corrosion resistance and micro-tribological properties of nickel hydroxide-graphene oxide composite coating, Diamond and Related Materials. Diam. Relat. Mater. 2017, 76, 150–156. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Wang, X.J.; Tian, H.; Xing, J.J.; Liu, L. Epoxy composite coating with excellent anti-corrosion and self-healing properties based on mesoporous silica nano-containers. J. Mol. Struct. 2023, 1294, 136538. [Google Scholar] [CrossRef]
- Wu, D.Q.; Su, Q.; Chen, L.; Cui, H.X.; Zhao, Z.C.; Wu, Y.P.; Zhou, H.D.; Chen, J.M. Achieving high anti-wear and corrosion protection performance of phenoxy-resin coatings based on reinforcing with functional graphene oxide. Appl. Surf. Sci. 2022, 601, 154156. [Google Scholar] [CrossRef]
- Dong, H.Y.; Zhan, Y.Q.; Chen, Y.W.; Li, Y.L.; Sun, A.; Chen, X.M.; Zhu, F.; Jia, H.S. Fabrication of hydrophobic and enhanced anticorrosion performance of epoxy coating through the synergy of functionalized graphene oxide and nano-silica binary fillers. Colloids Surf. A Physicochem. Eng. Asp. 2023, 664, 131086. [Google Scholar] [CrossRef]
- Huang, Z.W.; Chen, S.L.; Lin, Q.; Shen, B. Improved anticorrosive and tribological performance of Ti-6Al-4V alloys via a mussel-inspired graphene/phenol-formaldehyde resin nanocomposite coating. Prog. Org. Coat. 2022, 601, 154156. [Google Scholar] [CrossRef]
- Liu, L.S.; Zhao, M.Y.; Pei, X.Y.; Liu, S.K.; Luo, S.G.; Yan, M.J.; Shao, R.Q.; Sun, Y.; Xu, W.; Xu, Z.W. Improving corrosion resistance of epoxy coating by optimizing the stress distribution and dispersion of SiO2 filler. Prog. Org. Coat. 2023, 179, 107522. [Google Scholar] [CrossRef]
Serial Number | Ingredient | Content (wt.%) |
---|---|---|
1 | Titanium nanopowder | 20–30 |
2 | Silane coupling agent KH550 | 10–15 |
3 | Phenolic resin (chemistry) | 55–70 |
Serial Number | Ingredient | Content (wt.%) |
---|---|---|
1 | Nano-titanium-modified phenolic resin | 40~50 |
2 | Phenolic resin (chemistry) | 40~45 |
3 | Deionized water | 6~10 |
4 | Curing agent | 1~2 |
5 | Leveling agent | 1~1.5 |
6 | Thickener | 1~1.5 |
Coating | Rs/Ω·cm2 | CPE-T/Ω−1 cm−2·sn | R1/Ω·cm2 |
---|---|---|---|
PF | 6.82 | 5.21 × 10−5 | 1102 |
3% Ti-PF | 7.01 | 3.36 × 10−5 | 7104 |
4% Ti-PF | 12.16 | 6.00 × 10−5 | 15,452 |
5% Ti-PF | 16.27 | 5.00 × 10−5 | 11,747 |
Corrosion Time/h | Nano-Titanium-Modified Phenolic Resin Coating |
---|---|
0 | Coating intact |
96 | Coating intact |
192 | Coating intact |
288 | Coating intact |
384 | Discoloration of the coating and rust spots on the surface of the boards |
480 | Discoloration of the coating and rust spots on the surface of the boards |
576 | Discoloration of the coating and rust spots on the surface of the boards Light rusting at scratches, rusting on the lower side of boards |
672 | Discoloration of the coating and rust spots on the surface of the boards Rust at scratches, rust spreading on the lower side of the panel and also on the left side |
768 | Discoloration of coating, spreading of rust at scratches Cracked rust on panel |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, C.; Yuan, X.; Li, X.; Wang, X.; Cui, F.; Wang, X. Research on Nano-Titanium Modified Phenolic Resin Coating and Corrosion Resistance. Coatings 2023, 13, 1703. https://doi.org/10.3390/coatings13101703
Zheng C, Yuan X, Li X, Wang X, Cui F, Wang X. Research on Nano-Titanium Modified Phenolic Resin Coating and Corrosion Resistance. Coatings. 2023; 13(10):1703. https://doi.org/10.3390/coatings13101703
Chicago/Turabian StyleZheng, Chengwu, Xingdong Yuan, Xiaojing Li, Xuegang Wang, Fadong Cui, and Xiaoliang Wang. 2023. "Research on Nano-Titanium Modified Phenolic Resin Coating and Corrosion Resistance" Coatings 13, no. 10: 1703. https://doi.org/10.3390/coatings13101703
APA StyleZheng, C., Yuan, X., Li, X., Wang, X., Cui, F., & Wang, X. (2023). Research on Nano-Titanium Modified Phenolic Resin Coating and Corrosion Resistance. Coatings, 13(10), 1703. https://doi.org/10.3390/coatings13101703