Nanocellulose Coating on Kraft Paper
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Coating of Papers and Films Production
- Uncoated kraft paper (sample called control KP);
- Kraft paper with deposition of 1-mm of NFC suspension (sample called K1);
- Kraft paper with deposition of 2-mm of NFC suspension (sample called K2);
- NFC 1-mm film (sample called F1);
- NFC 2-mm film (sample called F2).
2.3. Morphological Analysis
2.4. Physical Tests
2.5. Mechanical Tests
2.6. Thermal Stability
2.7. Statistical Analysis
3. Results
3.1. Morphological Analysis
3.2. Physical Tests
3.3. Mechanical Tests
3.4. Thermal Stability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marsh, K.; Bugusu, B. Food packaging—Roles, materials, and environmental issues. J. Food Sci. 2007, 72, R39–R55. [Google Scholar] [CrossRef] [PubMed]
- Stefanini, R.; Borghesi, G.; Ronzano, A.; Vignali, G. Plastic or glass: A new environmental assessment with a marine litter indicator for the comparison of pasteurized milk bottles. Int. J. Life Cycle Assess. 2021, 26, 767–784. [Google Scholar] [CrossRef]
- Lengowski, E.C.; Bonfatti Júnior, E.A.; Satyanarayana, K.G. Nanocellulose-Improved Food Packaging. In Advanced Applications of Polysaccharides and Their Composites; Al-Ahmed, A., Inamuddin, Eds.; Materials Research Forum: Millersville, PA, USA, 2020; pp. 136–183. [Google Scholar]
- Sardon, H.; Dove, A.P. Plastics recycling with a difference. Science 2018, 360, 380–381. [Google Scholar] [CrossRef] [PubMed]
- Ncube, L.K.; Ude, A.U.; Ogunmuyiwa, E.N.; Zulkifli, R.; Beas, I.N. An overview of plastic waste generation and management in food packaging industries. Recycling 2021, 6, 12. [Google Scholar] [CrossRef]
- Kwon, G.; Cho, D.W.; Park, J.; Bhatnagar, A.; Song, H. A review of plastic pollution and their treatment technology: A circular economy platform by thermochemical pathway. J. Chem. Eng. 2023, 464, 142771. [Google Scholar] [CrossRef]
- Lau, W.W.; Shiran, Y.; Bailey, R.M.; Cook, E.; Stuchtey, M.R.; Koskella, J.; Velis, C.A.; Godfrey, L.; Boucher, J.; Murphy, M.B. Evaluating scenarios toward zero plastic pollution. Science 2020, 369, 1455–1461. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef]
- Kubowicz, S.; Booth, A.M. Biodegradability of plastics: Challenges and misconceptions. Environ. Sci. Technol. 2017, 51, 12058–12060. [Google Scholar] [CrossRef]
- Bacha, A.-U.-R.; Nabi, I.; Zaheer, M.; Jin, W.; Yang, L. Biodegradation of macro- and micro-plastics in environment: A review on mechanism, toxicity, and future perspectives. Sci. Total Environ. 2023, 858, 160108. [Google Scholar] [CrossRef]
- Wang, Y.-L.; Lee, Y.-H.; Chiu, I.-J.; Lin, Y.-F.; Chiu, H.-W. Potent Impact of Plastic Nanomaterials and Micromaterials on the Food Chain and Human Health. Int. J. Mol. Sci. 2020, 21, 1727. [Google Scholar] [CrossRef]
- Yee, M.S.-L.; Hii, L.-W.; Looi, C.K.; Lim, W.-M.; Wong, S.-F.; Kok, Y.-Y.; Tan, B.-K.; Wong, C.-Y.; Leong, C.-O. Impact of Microplastics and Nanoplastics on Human Health. Nanomaterials 2021, 11, 496. [Google Scholar] [CrossRef] [PubMed]
- Pironti, C.; Ricciardi, M.; Motta, O.; Miele, Y.; Proto, A.; Montano, L. Microplastics in the Environment: Intake through the Food Web, Human Exposure and Toxicological Effects. Toxics 2021, 9, 224. [Google Scholar] [CrossRef] [PubMed]
- Montano, L.; Pironti, C.; Pinto, G.; Ricciardi, M.; Buono, A.; Brogna, C.; Venier, M.; Piscopo, M.; Amoresano, A.; Motta, O. Polychlorinated Biphenyls (PCBs) in the Environment: Occupational and Exposure Events, Effects on Human Health and Fertility. Toxics 2022, 10, 365. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xie, E.; Du, Z.; Peng, Z.; Han, Z.; Li, L.; Zhao, R.; Qin, Y.; Xue, M.; Li, F.; et al. Detection of Various Microplastics in Patients Undergoing Cardiac Surgery. Environ. Sci. Technol. 2023, 57, 10911–10918. [Google Scholar] [CrossRef] [PubMed]
- Deshwal, G.K.; Panjagari, N.R.; Alam, T. An overview of paper and paper based food packaging materials: Health safety and environmental concerns. J. Food Sci. Technol. 2019, 56, 4391–4403. [Google Scholar] [CrossRef]
- Saxena, P.; Bissacco, G.; Meinert, K.Æ.; Danielak, A.H.; Ribó, M.M.; Pedersen, D.B. Soft tooling process chain for the manufacturing of micro-functional features on molds used for molding of paper bottles. J. Manuf. Process. 2020, 54, 129–137. [Google Scholar] [CrossRef]
- Ahuja, A.; Samyn, P.; Rastogi, V.K. Paper bottles: Potential to replace conventional packaging for liquid products. Biomass Convers. Bior. 2022, 1–27. [Google Scholar] [CrossRef]
- Smook, G. Handbook for Pulp and Paper Technologists, 4th ed.; TAPPI Press: Atlanta, GA, USA, 2016. [Google Scholar]
- Lengowski, E.C.; Bonfatti Júnior, E.A.; Kumode, M.M.N.; Carneiro, M.E.; Satyanarayana, K.G. Nanocellulose in the Paper Making. In Sustainable Polymer Composites and Nanocomposites; Al-Ahmed, A., Inamuddin, Thomas, S., Mishra, R.K., Asiri, A.M., Eds.; Springer Nature: Cham, Switzerland, 2019; pp. 1027–1065. [Google Scholar]
- Cremonez, V.G.; Bonfatti Júnior, E.A.; Andrade, A.S.; Silva, E.L.; Klitzke, R.J.; Klock, U. Wood basic density effect of Eucalyptus grandis in the paper making. Matéria 2019, 23, e12420. [Google Scholar] [CrossRef]
- Oliveira, R.C.P.; Mateus, M.; Santos, D.M.F. Chronoamperometric and Chronopotentiometric Investigation of Kraft Black Liquor. Int. J. Hydrogen Energy 2018, 43, 16817–16823. [Google Scholar] [CrossRef]
- Li, Z.; Rabnawaz, M.; Sarwar, M.G.; Khan, B.; Nair, A.K.; Sirinakbumrung, N.; Kamdem, D.P. A closed-loop and sustainable approach for the fabrication of plastic-free oil-and water-resistant paper products. Green Chem. 2019, 21, 5691–5700. [Google Scholar] [CrossRef]
- Lengowski, E.C.; Júnior, E.A.B.; Simon, L.; De Muñiz, G.I.B.; De Andrade, A.S.; Nisgoski, S.; Klock, U. Different degree of fibrillation: Strategy to reduce permeability in nanocellulose-starch films. Cellulose 2020, 27, 10855–10872. [Google Scholar] [CrossRef]
- Ranjan, V.P.; Joseph, A.; Goel, S. Microplastics and other harmful substances released from disposable paper cups into hot water. J. Hazard. Mater. 2021, 404, 124118. [Google Scholar] [CrossRef] [PubMed]
- Nechita, P.; Roman, M. Review on Polysaccharides Used in Coatings for Food Packaging Papers. Coatings 2020, 10, 566. [Google Scholar] [CrossRef]
- Lengowski, E.C.; Bonfatti Júnior, E.A.; Muñiz, G.I.B.; Satyanarayana, K.G. Barrier properties of nanoparticle-based polymer composites. In Synthetic and Natural Nanofillers in Polymer Composites; Nurazzi, N.M., Ilays, R.A., Sapuan, S.M., Khalina, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 219–241. [Google Scholar]
- Fujisawa, S.; Okita, Y.; Fukuzumi, H.; Saito, T.; Isogai, A. Preparation and characterization of tempo-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydr. Polym. 2011, 84, 579–583. [Google Scholar] [CrossRef]
- Spagnuolo, L.; D’Orsi, R.; Operamolla, A. Nanocellulose for paper and textile coating: The importance of surface chemistry. ChemPlusChem 2022, 87, e202200204. [Google Scholar] [CrossRef]
- ISO 5269-2:2004; Pulps–Preparation of Laboratory Sheets for Physical Testing—Part 2: Rapid-Köthen Method. International Standardization Organization: Geneva, Switzerland, 2008.
- Magalhãoes, W.L.E.; Claro, F.C.; Matos, M.; Lengowski, E.C. Produção de Nanofibrilas de Celulose por Desfibrilação Mecânica em Moinho Coloidal; Embrapa Florestas: Colombo, Brazil, 2017. [Google Scholar]
- TAPPI T 402 sp-13; Standard Conditioning and Testing Atmospheres for Paper, Board, Pulp Handsheets, and Related Products. Technical Association of Pulp and Paper Industry: Atlanta, GA, USA, 2013.
- TAPPI T 220 sp-16; Physical Testing of Pulp Handsheets. Technical Association of Pulp and Paper Industry: Atlanta, GA, USA, 2016.
- TAPPI T 441 om-20; Water Absorptiveness of Sized (Non-Bibulous) Paper, Paperboard, and Corrugated Fiberboard (Cobb Test). Technical Association of Pulp and Paper Industry: Atlanta, GA, USA, 2020.
- TAPPI T 460 om-16; Air Resistance of Paper (Gurley Method). Technical Association of Pulp and Paper Industry: Atlanta, GA, USA, 2016.
- TAPPI T 494 om-22; Tensile Properties of Paper and Paperboard (Using Constant Rate of Elongation Apparatus). Technical Association of Pulp and Paper Industry: Atlanta, GA, USA, 2022.
- TAPPI T 403 om-22; Bursting Strength of Paper. Technical Association of Pulp and Paper Industry: Atlanta, GA, USA, 2023.
- TAPPI T 414 om-21; Internal Tearing Resistance of Paper (Elmendorf-Type Method). Technical Association of Pulp and Paper Industry: Atlanta, GA, USA, 2021.
- Swinehart, D. Fundamentals of Refining; MeadWestvaco Center for Packaging Innovation: Richmond, VA, USA, 2012. [Google Scholar]
- Nakagaito, A.N.; Yano, H. The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl. Phys. A 2004, 78, 547–552. [Google Scholar] [CrossRef]
- Balea, A.; Monte, M.C.; Merayo, N.; Campano, C.; Negro, C.; Blanco, A. Industrial application of nanocelluloses in papermaking: A review of challenges, technical solutions, and market perspectives. Molecules 2020, 25, 526. [Google Scholar] [CrossRef]
- Wang, W.; Gu, F.; Deng, Z.; Zhu, Y.; Zhu, J.; Guo, T.; Song, J.; Xiao, H. Multilayer surface construction for enhancing barrier properties of cellulose-based packaging. Carbohydr. Polym. 2021, 255, 117431. [Google Scholar] [CrossRef]
- Spence, K.L.; Venditi, R.A.; Rojas, O.J.; Habibi, Y.; Pawlak, J.J. The effect of chemical composition on microfibrillar cellulose films from wood pulps: Water interactions and physical properties for packaging applications. Cellulose 2010, 17, 835–848. [Google Scholar] [CrossRef]
- Tarrés, Q.; Aguado, R.; Pèlach, M.À.; Mutjé, P.; Delgado-Aguilar, M. Electrospray Deposition of Cellulose Nanofibers on Paper: Overcoming the Limitations of Conventional Coating. Nanomaterials 2022, 12, 79. [Google Scholar] [CrossRef]
- Chanda, S.; Bajwa, D.S. A review of current physical techniques for dispersion of cellulose nanomaterials in polymer matrices. Rev. Adv. Mater. Sci. 2021, 60, 325–341. [Google Scholar] [CrossRef]
- Pego, M.F.F.; Bianchi, M.L.; Yasumura, P.K. Nanocellulose reinforcement in paper produced from fiber blending. Wood Sci. Technol. 2020, 54, 1587–1603. [Google Scholar] [CrossRef]
- López-Rubio, A.; Lagarón, J.M.; Hernandez-Munoz, P.; Almenar, E.; Catalá, R.; Gavara, R.; Pascall, M.A. Effect of high pressure treatments on the properties of EVOH-based food packaging materials. Innov. Food Sci. Emerg. Technol. 2005, 6, 51–58. [Google Scholar] [CrossRef]
- Hans-Jürgen Butt, H.-J.; Liu, J.; Koynov, K.; Straub, B.; Hinduja, C.; Roismann, I.; Berger, R.; Li, X.; Vollmer, D.; Steffen, W.; et al. Contact angle hysteresis. Curr. Opin. Colloid Interface Sci. 2022, 59, 101574. [Google Scholar] [CrossRef]
- Dufresne, A. Nanocellulose: From Nature to High Performance Tailored Materials; Walter de Gruyter: Berlin, Germany, 2013. [Google Scholar]
- Mtibe, A.; Linganiso, L.Z.; Mathew, A.P.; Oksman, K.; John, M.J.; Anandjiwala, R.D. A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres. Carbohydr. Polym. 2015, 118, 1–8. [Google Scholar] [CrossRef]
- Stelte, W.; Sanadi, A.R. Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Ind. Eng. Chem. Res. 2009, 48, 11211–11219. [Google Scholar] [CrossRef]
- Huang, Y.; Nair, S.S.; Chen, H.; Fei, B.; Yan, N.; Feng, Q. Lignin-Rich Nanocellulose Fibrils Isolated from Parenchyma Cells and Fiber Cells of Western Red Cedar Bark. ACS Sustain. Chem. Eng. 2019, 7, 15607–15616. [Google Scholar] [CrossRef]
- Thanakkasaranee, S.; Sadeghi, K.; Seo, J. Packaging materials and technologies for microwave applications: A review. Crit. Rev. Food Sci. Nutr. 2022, 63, 6464–6483. [Google Scholar] [CrossRef]
- Majder-Łopatka, M.; Węsierski, T.; Ankowski, A.; Ratajczak, K.; Duralski, D.; Piechota-Polanczyk, A.; Polanczyk, A. Thermal Analysis of Plastics Used in the Food Industry. Materials 2022, 15, 248. [Google Scholar] [CrossRef]
Sample | Apparent Density (g/cm3) | Water Absorption (g/m2) |
---|---|---|
KP | 0.44 a (1.73) | 133.15 c (3.90) |
K1cs | 0.59 ab (11.33) | 55.82 b (1.43) |
K1 ps | 192.82 d (5.46) | |
K2 cs | 0.63 bc (2.12) | 60.55 b (4.16) |
K2 ps | 195.86 d (2.40) | |
F1 | 0.73 cd (8.58) | 34.23 a (5.26) |
F2 | 0.86 d (13.96) | 40.76 a (7.44) |
Sample | 0 s | 5 s″ | 15 s | 30 s |
---|---|---|---|---|
KP | 65.36 d (11.79) | 18.45 a (30.28) | 0 | 0 |
K1 cs | 53.37 cd (32.75) | 45.03 bc (35.42) | 43.47 a (46.08) | 44.28 a (49.34) |
K1 ps | 64.38 d (16.19) | 0 | 0 | 0 |
K2 cs | 45.46 bc (17.09) | 41.18 bc (23.82) | 42.32 a (27.59) | 41.95 a (28.32) |
K2 ps | 64.42 d (12.32) | 0 | 0 | 0 |
F1 | 36.14 ab (14.06) | 25.43 ab (20.86) | 0 | 0 |
F2 | 26.58 a (32.82) | 20.75 a (16.70) | 0 | 0 |
Sample | 0 s | 5 s″ | 15 s | 30 s |
---|---|---|---|---|
KP | 86.56 cd (9.55) | 49.01 b (13.47) | 35.88 b (18.70) | 27.92 cd (19.27) |
K1 cs | 71.24 a (12.60) | 42.79 ab (34.89) | 29.80 ab (31.90) | 22.90 bc (21.64) |
K1 ps | 92.20 d (5.98) | 51.70 b (15.40) | 36.57 b (18.51) | 30.56 cd (22.40) |
K2 cs | 80.33 abcd (13.98) | 46.51 ab (25.99) | 35.57 b (36.99) | 27.58 cd (20.99) |
K2 ps | 82.03 bcd (9.18) | 45.54 ab (19.09) | 34.53 b (26.83) | 33.21 d (20.67) |
F1 | 77.71 abc (11.98) | 34.48 a (25.07) | 20.41 a (29.86) | 11.64 a (33.46) |
F2 | 74.06 ab (8.22) | 35.30 a (14.82) | 23.47 a (15.33) | 15.60 ab (24.84) |
Sample | BI (kPa·m2/g) | RI (mN·m2/g) | TI (N·m/g) |
---|---|---|---|
KP | 4.20 a (5.76) | 18.00 a (3.80) | 57.80 a (10.27) |
K1 | 5.56 b (20.99) | 19.57 b (2.62) | 67.24 ab (7.64) |
K2 | 7.42 c (10.53) | 21.40 c (2.60) | 75.42 bc (8.58) |
F1 | 2.16 d (14.84) | - | 83.07 c (8.27) |
F2 | 3.18 e (28.93) | - | 76.05 bc (18.06) |
Sample | Mass Loss (%) | ||||
---|---|---|---|---|---|
100–200 °C | 200–300 °C | 300–400 °C | 400–500 °C | Residual Mass (%) | |
KP | 0.38 | 4.15 | 65.11 | 3.26 | 27.10 |
K1 | 0.75 | 4.16 | 63.13 | 3.95 | 28.02 |
K2 | 0.56 | 4.18 | 65.99 | 4.20 | 25.06 |
F1 and F2 | 0.02 | 6.47 | 56.98 | 3.85 | 32.69 |
Sample | Thermal Degradation Intervals (°C) | ||
---|---|---|---|
Tonset | Tmax | Tendset | |
KP | 226 | 359 | 390 |
K1 | 221 | 357 | 390 |
K2 | 237 | 357 | 394 |
F1 and F2 | 232 | 341 | 283 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lengowski, E.C.; Bonfatti Júnior, E.A.; Coelho Simon, L.; Bolzon de Muniz, G.I.; Sulato de Andrade, A.; Neves Leite, A.; Souza de Miranda Leite, E.L. Nanocellulose Coating on Kraft Paper. Coatings 2023, 13, 1705. https://doi.org/10.3390/coatings13101705
Lengowski EC, Bonfatti Júnior EA, Coelho Simon L, Bolzon de Muniz GI, Sulato de Andrade A, Neves Leite A, Souza de Miranda Leite EL. Nanocellulose Coating on Kraft Paper. Coatings. 2023; 13(10):1705. https://doi.org/10.3390/coatings13101705
Chicago/Turabian StyleLengowski, Elaine Cristina, Eraldo Antonio Bonfatti Júnior, Leonardo Coelho Simon, Graciela Inês Bolzon de Muniz, Alan Sulato de Andrade, Aleffe Neves Leite, and Emilly Laize Souza de Miranda Leite. 2023. "Nanocellulose Coating on Kraft Paper" Coatings 13, no. 10: 1705. https://doi.org/10.3390/coatings13101705
APA StyleLengowski, E. C., Bonfatti Júnior, E. A., Coelho Simon, L., Bolzon de Muniz, G. I., Sulato de Andrade, A., Neves Leite, A., & Souza de Miranda Leite, E. L. (2023). Nanocellulose Coating on Kraft Paper. Coatings, 13(10), 1705. https://doi.org/10.3390/coatings13101705