Sintering Behavior, Microstructure and Microwave Dielectric Properties of Li2TiO3-Based Solid Solution Ceramics with Lithium Fluoride Addition for Low-Temperature Co-Fired Ceramic Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of LTCN + x wt% LiF Ceramics
2.3. Structural and Properties Characterizations
3. Results and Discussion
3.1. Phase Composition and Structure Analysis
3.2. Density and Microscopic Morphology Analysis
3.3. Microwave Dielectric Properties Analysis
3.4. Chemical Compliance with Silver Electrode Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Masin, B.; Ashok, K.; Jayalatha, T.; Supriya, N.; Sreemoolanadhan, H.; Prabhakaran, K. A study of densification and enhanced microwave dielectric properties of Al2O3–polystyrene ceramic composites. J. Electron. Mater. 2023, 52, 6019–6030. [Google Scholar] [CrossRef]
- Ahmad, T.; Ullah, B.; Lei, W.; Lu, W.Z. Band gap engineering and microwave dielectric properties evolution of mixed (Sr, La, Ce)TiMgO3 titanate–aluminate system. Ceram. Int. 2023, 49, 6307–6313. [Google Scholar] [CrossRef]
- Guo, W.J.; Ma, Z.Y.; Luo, Y.; Chen, Y.G. Structure, defects, and microwave dielectric properties of Al-doped and Al/Nd co-doped Ba4Nd9.33Ti18O54 ceramics. J. Adv. Ceram. 2022, 11, 629–640. [Google Scholar] [CrossRef]
- Djouada, D.; Bouzit, N.; Delfouf, R.; Chioukh, L.; Martinez Jiménez, J.P. Dielectric characterization of heterogeneous composites using time domain spectroscopy and microwave test benches in microwave frequency. ECS J. Solid State Sci. Technol. 2023, 12, 063003. [Google Scholar] [CrossRef]
- Bao, J.; Zhang, Y.P.; Kimura, H.; Wu, H.T.; Yue, Z.X. Crystal structure, chemical bond characteristics, infrared reflection spectrum, and microwave dielectric properties of Nd2(Zr1−xTix)3(MoO4)9 ceramics. J. Adv. Ceram. 2023, 12, 82–92. [Google Scholar] [CrossRef]
- Ivetić, T.B.; Xia, Y.; Benzine, O.; Petrović, J.; Papan, J.; Lukić-Petrović, S.R.; Litvinchuk, A.P. Structure, electrochemical impedance and Raman spectroscopy of lithium-niobium- titanium-oxide ceramics for LTCC technology. Ceram. Int. 2021, 47, 4944–4953. [Google Scholar] [CrossRef]
- Sarmento, J.S.; Paiva, D.V.M.; de Araújo, E.V.; Silva, M.A.S.; Sombra, A.S.B.; Mazzetto, S.E.; Fechine, P.B.A. Dielectric properties of MCuSi4O10(M = Ca, Sr, Ba) electro ceramic at RF and microwave frequencies. Appl. Phys. A 2023, 129, 72. [Google Scholar] [CrossRef]
- Chen, G.H.; Xu, H.R.; Yuan, C.L. Microstructure and microwave dielectric properties of Li2Ti1−x(Zn1/3Nb2/3)xO3 ceramics. Ceram. Int. 2013, 39, 4887–4892. [Google Scholar] [CrossRef]
- Reda, A.E. Effect of ZnO on sintering and microwave dielectric properties of 0.5CaTiO3-0.5(Li0.5La0.5)TiO3 ceramics. J. Indian Chem. Soc. 2023, 100, 100901. [Google Scholar] [CrossRef]
- Fu, Z.F.; Liu, P.; Ma, J.L.; Chen, X.M.; Zhang, H.W. New high Q low-fired Li2Mg3TiO6 microwave dielectric ceramics with rock salt structure. Mater. Lett. 2016, 164, 436–439. [Google Scholar] [CrossRef]
- Bi, J.X.; Li, C.C.; Zhang, Y.H.; Xing, C.F.; Yang, C.H.; Wu, H.T. Crystal structure, infrared spectra and microwave dielectric properties of ultra low-loss Li2Mg4TiO7 ceramics. Mater. Lett. 2017, 196, 128–131. [Google Scholar] [CrossRef]
- Huang, C.L.; Tseng, Y.W.; Chen, J.Y. High-Q dielectrics using ZnO-modified Li2TiO3 ceramics for microwave applications. J. Eur. Ceram. Soc. 2012, 32, 3287–3295. [Google Scholar] [CrossRef]
- Bian, J.J.; Wang, L.; Yuan, L.L. Microwave dielectric properties of Li2-xTi1−4xNb3xO3 (0 ≤ x ≤ 0.1). Mater. Sci. Eng. B 2009, 164, 96–100. [Google Scholar] [CrossRef]
- Bian, J.J.; Dong, Y.F. New high Q microwave dielectric ceramics with rock salt structures: (1−x)Li2TiO3 + xMgO system (0 ≤ x ≤ 0.5). J. Eur. Ceram. Soc. 2010, 30, 325–330. [Google Scholar] [CrossRef]
- Zhang, J.; Zuo, R.Z. Low-temperature fired thermal-stable Li2TiO3–NiO microwave dielectric ceramics. J. Mater. Sci. Mater. Electron. 2016, 27, 7962–7968. [Google Scholar] [CrossRef]
- Martins, V.C.; Oliveira, R.G.M.; Carmo, F.F.; Silva, M.A.S.; Pereira, S.A.; Goes, J.C.; Costa, M.M.; Gouveia, D.X.; Sombra, A.S.B. High thermal stability OF Li2TiO3-Al2O3 composite in the microwave C-Band. J. Phys. Chem. Solids 2019, 125, 51–56. [Google Scholar] [CrossRef]
- Du, M.K.; Li, L.X.; Yu, S.H.; Sun, Z.; Qiao, J.L. High-Q microwave ceramics of Li2TiO3 co-doped with magnesium and niobium. J. Am. Ceram. Soc. 2018, 101, 4066–4075. [Google Scholar] [CrossRef]
- Chen, W.S.; Hung, M.L.; Hsu, C.H. Effects of (Co1/3Nb2/3)4+ substitution on microstructure and microwave dielectric properties of Li2Ti1−x(Co1/3Nb2/3)xO3 ceramics for applications in ceramic antenna. J. Asian Ceram. Soc. 2021, 9, 433–442. [Google Scholar] [CrossRef]
- Zhang, T.W.; Zuo, R.Z.; Zhang, J. Structure, microwave dielectric properties, and low-temperature sintering of acceptor/donor co-doped Li2Ti1−x(Al0.5Nb0.5)xO3 ceramics. J. Am. Ceram. Soc. 2016, 99, 825–832. [Google Scholar] [CrossRef]
- Chen, G.H.; Yang, Y. Low-temperature sintering and microwave dielectric properties of Li2TiO3 based ceramics. J. Mater. Sci. Mater. Electron. 2013, 24, 1012–1017. [Google Scholar] [CrossRef]
- Guo, H.H.; Fu, M.S.; Zhou, D.; Du, C.; Wang, P.J.; Pang, L.X.; Liu, W.F.; Sombra, A.S.B.; Su, J.Z. Design of a high-efficiency and -gain antenna using novel low-loss, temperature-stable Li2Ti1−x(Cu1/3Nb2/3)xO3 microwave dielectric ceramics. ACS Appl. Mater. Interfaces 2021, 13, 912–923. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.H.; Zhou, D.; Du, C.; Wang, P.J.; Liu, W.F.; Pang, L.X.; Wang, Q.P.; Su, J.Z.; Singh, C.; Trukhanov, S. Temperature stable Li2Ti0.75(Mg1/3Nb2/3)0.25O3-based microwave dielectric ceramics with low sintering temperature and ultra-low dielectric loss for dielectric resonator antenna applications. J. Mater. Chem. C 2020, 8, 4690–4700. [Google Scholar] [CrossRef]
- Wang, D.; Li, L.X.; Du, M.K.; Zhan, Y. A low-sintering temperature microwave dielectric ceramic for 5G LTCC applications with ultralow loss. Ceram. Int. 2021, 47, 28675–28684. [Google Scholar] [CrossRef]
- Song, X.Q.; Du, K.; Li, J.; Lan, X.K.; Lu, W.Z.; Wang, X.H.; Lei, W. Low-fired fluoride microwave dielectric ceramics with low dielectric loss. Ceram. Int. 2019, 45, 279–286. [Google Scholar] [CrossRef]
- Tarakina, N.V.; Neder, R.B.; Denisova, T.A.; Maksinova, L.G.; Baklanova, Y.V.; Tyutyunnik, A.P.; Zubkov, V.G. Defect crystal structure of new TiO(OH)2 hydroxide and related lithium salt Li2TiO3. Dalton. Trans. 2010, 39, 8168–8176. [Google Scholar] [CrossRef]
- Fehr, T.; Schmidbauer, E. Electrical conductivity of Li2TiO3 ceramics. Solid. State. Ion. 2007, 178, 35–41. [Google Scholar] [CrossRef]
- Bian, J.J.; Wu, J.Y.; Wang, L. Structural evolution, sintering behavior and microwave dielectric properties of (1−x)Li3NbO4−xLiF (0 ≤ x ≤ 0.9). J. Eur. Ceram. Soc. 2012, 32, 1251–1259. [Google Scholar] [CrossRef]
- Hao, Y.Z.; Yang, H.; Chen, G.H.; Zhang, Q.L. Microwave dielectric properties of Li2TiO3 ceramics doped with LiF for LTCC applications. J. Alloys Compd. 2013, 552, 173–179. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Tang, Y.; Xiang, H.C.; Yang, A.; Wang, Y.; Yin, C.Z.; Tian, Y.F.; Fang, L. Li5Ti2O6F: A new low–loss oxyfluoride microwave dielectric ceramic for LTCC applications. J. Mater. Sci. 2020, 55, 107–115. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Fang, L.; Xiang, H.C.; Xu, M.Y.; Tang, Y.; Jantunen, H.L.; Li, C.C. Structural, infrared reflectivity spectra and microwave dielectric properties of the Li7Ti3O9F ceramic. Ceram. Int. 2019, 45, 10163–10169. [Google Scholar]
- Liu, X.L.; Wang, Z.X.; She, X.Y.; Jia, Q.L.; Li, J.M. Improved microstructure and high quality factor of Li2Ti0.9(Zn1/3Ta2/3)0.1O3 microwave ceramics with LiF additive for LTCC applications. J. Eur. Ceram. Soc. 2023, 43, 1469–1476. [Google Scholar] [CrossRef]
- Liu, L.T.; Guo, W.J.; Yan, S.J.; Liu, P.; Du, J.L.; Zhang, Y.P.; Wu, H.T.; Chen, Y.G.; Yue, Z.X. Microstructure, Raman spectroscopy, THz time domain spectrum and microwave dielectric properties of Li2Ti1−x(Zn1/3Ta2/3)xO3 ceramics. Ceram. Int. 2023, 49, 6864–6872. [Google Scholar]
- Liu, L.T.; Guo, W.J.; Li, H.; Liu, P.; Qin, S.T.; Rong, X.X.; Liu, T.T.; Du, J.L.; Zhang, Y.P.; Chen, Y.G.; et al. The effect of (Mg1/3Ta2/3)4+ on the structure, Raman vibration, Terahertz time domain spectroscopy and dielectric properties for the Li2TiO3 ceramic. Ceram. Int. 2023, 49, 10186–10192. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta. Cryst. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Ding, Y.M.; Bian, J.J. Structural evolution, sintering behavior and microwave dielectric properties of (1 − x)Li2TiO3 + xLiF ceramics. Mater. Res. Bull. 2013, 48, 2776–2781. [Google Scholar] [CrossRef]
- Jung, C.H. Sintering characterization of Li2TiO3 ceramic breeder powders prepared by the solution combustion synthesis process. J. Nucl. Mater. 2005, 341, 148–152. [Google Scholar] [CrossRef]
- Yang, Y.K.; Liu, F.L.; Zhang, Y.W.; Li, M.F.; Liang, F.; Wu, H.T. Microwave dielectric properties of ultra-low loss Li2MgTi0.7(Mg1/3Nb2/3)0.3O4 ceramics sintered at low temperature by LiF addition. Ceram. Int. 2018, 44, 12238–12244. [Google Scholar] [CrossRef]
- Kumar, A.V.; Subramanian, V.; Sivasubramanian, V. Enhanced microwave dielectric properties of ZnNb2O6 by heterovalent ion substitution. J. Alloys Compd. 2023, 944, 169202. [Google Scholar] [CrossRef]
- Kan, A.; Hirabayashi, R.; Takahashi, S.; Ogawa, H. Low-temperature crystallization and microwave dielectric properties of forsterite generated in MgO–SiO2 system following LiF addition. Ceram. Int. 2023, 49, 9883–9892. [Google Scholar] [CrossRef]
- Shannon, R.D. Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 1993, 73, 348–365. [Google Scholar] [CrossRef]
- Wang, Z.X.; Guo, Y.F.; Li, J.M. Investigation on phase structure, spectral characteristics, microstructure and microwave dielectric properties of Li2Zn[Ti1−x(Co1/3Nb2/3)x]3O8 (0.0 ≤ x ≤ 0.4) ceramics. Ceram. Int. 2023, 49, 15304–15314. [Google Scholar] [CrossRef]
- Forghani, M.; Paydar, M.H.; Podonak, M.K.; Li, L. Microstructure and dielectric properties of novel MgTiO3-xwt% MgAl2O4 microwave dielectric composite ceramics. J. Mater. Sci. Mater. Electron. 2023, 34, 690. [Google Scholar] [CrossRef]
- Kumar, R.A.; Dutta, A.; Sinha, T.P. Structural and dielectric properties of microwave dielectric materials xBa(Zn1/3Ta2/3)O3-(1−x)La(Zn1/2Ti1/2)O3. J. Electroceramics. 2023, 50, 1–10. [Google Scholar] [CrossRef]
- Liu, B.; Sha, K.; Jia, Y.Q.; Huang, Y.H.; Hu, C.C.; Li, L.; Wang, D.W.; Zhou, D.; Song, K.X. High quality factor cold sintered LiF ceramics for microstrip patch antenna applications. J. Eur. Ceram. Soc. 2021, 41, 4835–4840. [Google Scholar] [CrossRef]
- Pulphol, P.; Vittayakorn, W.; Bongkarn, T.; Kolodiazhnyi, T.; Pongampai, S.; Maluangnont, T.; Vittayakorn, N. The tuning of temperature stability in ultralow loss (Ba/Sr) zirconate microwave dielectric. Ferroelectrics 2022, 601, 59–69. [Google Scholar] [CrossRef]
- Gupta, R.; Kim, E.Y.; Shin, H.S.; Lee, G.Y.; Yeo, D.H. Structural, microstructural, and microwave dielectric properties of (Al1−xBx)2Mo3O12 ceramics with low dielectric constant and low dielectric loss for LTCC applications. Ceram. Int. 2023, 49, 22690–22701. [Google Scholar] [CrossRef]
- Wang, Z.X.; Guo, Y.F.; Li, J.M.; Li, C.H. A novel oxyfluoride ceramic in Li2TiO3–LiF system for LTCC applications. Ceram. Int. 2023, 49, 33425–33431. [Google Scholar] [CrossRef]
- Zhai, S.M.; Liu, P.; Zhang, S.S. A novel high-Q oxyfluoride Li4Mg2NbO6F microwave dielectric ceramic with low sintering temperature. J. Eur. Ceram. Soc. 2021, 41, 4478–4483. [Google Scholar] [CrossRef]
Ceramic System | εr | Q × f (GHz) | τf (ppm/°C) | Reference |
---|---|---|---|---|
0.8Li2TiO3-0.2MgO | 19.2 | 106,226 | +3.56 | [14] |
0.8Li2TiO3-0.2NiO | 20.4 | 83,608 | +1.97 | [16] |
0.7Li2TiO3-0.3ZnO | 22.95 | 99,800 | −32.7 | [12] |
Li2Ti0.8(Cu1/3Nb2/3)0.2O3 | 18.3 | 77,840 | +9.8 | [21] |
Li2Ti0.85(Zn1/3Ta2/3)0.15O3 | 18.69 | 102,531 | +11.8 | [32] |
Li2Ti0.85(Mg1/3Ta2/3)0.15O3 | 19.48 | 80,005 | +9.5 | [33] |
Li2Ti0.7(Co1/3Nb2/3)0.3O3 | 21.3 | 110,000 | 0 | [18] |
Li2Ti0.7(Al1/3Nb2/3)0.3O3 | 21.2 | 181,800 | +12.8 | [19] |
Li2Ti0.7(Mg1/3Nb2/3)0.3O3 | 19.01 | 113,774 | +13.38 | [17] |
Li2Ti0.8(Co1/3Nb2/3)0.2O3 | 18.83 | 102,500 | +9.27 | This work |
x Value | Lattice Parameter (a = b = c) (Å) | Cell Volume (Å3) |
---|---|---|
1 | 4.1518(8) | 71.570(9) |
2 | 4.1516(7) | 71.559(7) |
3 | 4.1504(1) | 71.495(0) |
4 | 4.1495(4) | 71.449(9) |
5 | 4.1488(7) | 71.415(1) |
Ceramic System | ST. (°C) | εr | Q × f (GHz) | τf (ppm/°C) | Reference |
---|---|---|---|---|---|
Li2TiO3-2.5 wt%LiF | 950 | 24.01 | 75500 | +36.2 | [28] |
Li2Ti0.9(Zn1/3Ta2/3)0.1O3-3 wt%LiF | 950 | 23.14 | 110,090 | +3.25 | [31] |
0.9Li2TiO3-0.1LiF | 1100 | 23.6 | 108,000 | +4.2 | [35] |
Li2MgTi0.7(Mg1/3Nb2/3)0.3O4-3 wt% LiF | 1100 | 16.32 | 145,384 | −16.33 | [37] |
Li3TiO3F | 900 | 17.28 | 96,280 | −32.7 | [47] |
Li5Ti2O6F | 880 | 19.6 | 79,500 | −29.6 | [29] |
Li7Ti3O9F | 950 | 22.5 | 88,200 | −24.2 | [30] |
Li4Mg2NbO6F | 900 | 15.53 | 93,300 | −39.8 | [48] |
LTCN-3 wt%LiF | 950 | 19.01 | 144,890 | −1.52 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Wang, Z.; Li, J. Sintering Behavior, Microstructure and Microwave Dielectric Properties of Li2TiO3-Based Solid Solution Ceramics with Lithium Fluoride Addition for Low-Temperature Co-Fired Ceramic Applications. Coatings 2023, 13, 1732. https://doi.org/10.3390/coatings13101732
Guo Y, Wang Z, Li J. Sintering Behavior, Microstructure and Microwave Dielectric Properties of Li2TiO3-Based Solid Solution Ceramics with Lithium Fluoride Addition for Low-Temperature Co-Fired Ceramic Applications. Coatings. 2023; 13(10):1732. https://doi.org/10.3390/coatings13101732
Chicago/Turabian StyleGuo, Yunfeng, Zexing Wang, and Jiamao Li. 2023. "Sintering Behavior, Microstructure and Microwave Dielectric Properties of Li2TiO3-Based Solid Solution Ceramics with Lithium Fluoride Addition for Low-Temperature Co-Fired Ceramic Applications" Coatings 13, no. 10: 1732. https://doi.org/10.3390/coatings13101732
APA StyleGuo, Y., Wang, Z., & Li, J. (2023). Sintering Behavior, Microstructure and Microwave Dielectric Properties of Li2TiO3-Based Solid Solution Ceramics with Lithium Fluoride Addition for Low-Temperature Co-Fired Ceramic Applications. Coatings, 13(10), 1732. https://doi.org/10.3390/coatings13101732