Hybrid Ceramic Self-Healing Coatings for Corrosion Protection of Al Alloys in 3% NaCl Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Poly(vinyl alcohol) (PVA) Spheres Preparation
2.1.2. Inhibitor Encapsulation
2.1.3. Substrate and Coatings Preparation
- Dissolution of 3 mL of titanium tetra-isopropoxide (Sigma-Aldrich, CAS n° 546-68-9) in 50 mL of ethanol and 3 mL of acetic acid (with both functions of acid catalyst and chelating agent) under stirring at 200 rpm for 2 h, 30 mg of spheres with inhibitor were added.
- Immersion of the substrate in the solution for 30 s.
- Formation of a wet layer by extraction of the substrate at a speed of 4 cm/min.
- Gelation of the layer by solvent evaporation at room temperature for a night and subsequent destabilization of the sol.
2.2. Methods
2.2.1. Coatings Characterization
2.2.2. Electrochemical Characterization
3. Results
3.1. Microspheres Characterization
3.2. Coating Characterization
- One with 1 layer of coating with spheres (Ti1DS).
- One with 1 layer of coating with spheres and 1 layer without spheres (Ti1DS1DT).
- The characterization of the coatings is reported below.
3.2.1. Surface Morphology
3.2.2. EIS Analysis of Coatings
3.2.3. Morphology Analysis after Corrosion
3.2.4. Electrochemical Analysis after Surface Scratch
3.2.5. SEM Analysis after Surface Scratch
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, R.M.; Bena, J.F.; Stayner, L.T.; Smith, R.J.; Gibb, H.J.; Lees, P.S.J. Hexavalent chromium and lung cancer in the chromate industry: A quantitative risk assessment. Risk Anal. 2004, 24, 1099–1108. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; He, L.; Niu, Z.; Xiao, P.; Zhou, W.; Li, Y. Corrosion behavior of ytterbium hafnate exposed to water-vapor with Al(OH)3 impurities. J. Eur. Ceram. Soc. 2023, 43, 612–620. [Google Scholar] [CrossRef]
- He, L.; Pan, L.; Zhou, W.; Niu, Z.; Chen, X.; Chen, M.; Zhang, Q.; Pan, W.; Xiao, P.; Li, Y. Thermal corrosion behavior of Yb4Hf3O12 ceramics exposed to calcium-ferrum-alumina-silicate (CFAS) at 1400 °C. J. Eur. Ceram. Soc. 2023, 43, 4114–4123. [Google Scholar] [CrossRef]
- Kok, W.H.; Sun, X.; Shi, L.; Wong, K.C.; Mitchell, K.A.R.; Foster, T. Formation of zinc phosphate coatings on AA6061 aluminum alloy. J. Mater. Sci. 2001, 36, 3941–3946. [Google Scholar] [CrossRef]
- Dabalà, M.; Ramous, E.; Magrini, M. Corrosion resistance of cerium-based chemical conversion coatings on AA5083 aluminium alloy. Mater. Corros. 2004, 55, 381–386. [Google Scholar] [CrossRef]
- Parsa, M.; Hosseini, S.M.A.; Jamalizadeh, E.; Saheb, V. Preparation and corrosion protective properties of titania-containing modified self-assembled nanophase particle (TMSNAP) sol–gel on AA2024 aluminum alloy. Mater. Corros. 2013, 64, 821–830. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, F.; Xue, C.; Li, L.; Yin, Y. Structure stability and corrosion resistance of nano-TiO2 coatings on aluminum in seawater by a vacuum dip-coating method. Surf. Coat. Technol. 2010, 205, 2335–2339. [Google Scholar] [CrossRef]
- Jothi, K.J.; Palanivelu, K. Praseodymium oxide modified hybrid silane coatings for anti-corrosion applications. Surf. Eng. 2016, 32, 47–52. [Google Scholar] [CrossRef]
- Mori, S.; Lamastra, F.R.; Kaciulis, S.; Soltani, P.; Montesperelli, G. Low-temperature titania coatings for aluminium corrosion protection. Corros. Eng. Sci. Technol. 2018, 53, 44–53. [Google Scholar] [CrossRef]
- G-Berasategui, E.; Bayón, R.; Zubizarreta, C.; Barriga, J.; Barros, R.; Martins, R.; Fortunato, E. Corrosion resistance analysis of aluminium-doped zinc oxide layers deposited by pulsed magnetron sputtering. Thin Solid Films 2015, 594, 256–260. [Google Scholar] [CrossRef]
- Sivapragash, M.; Kumaradhas, P.; Retnam, B.S.J.; Joseph, X.F.; Pillai, U.T.S. Taguchi based genetic approach for optimizing the PVD process parameter for coating ZrN on AZ91D magnesium alloy. Mater. Des. 2016, 90, 713–722. [Google Scholar] [CrossRef]
- Lugscheider, E.; Krämer, G.; Barimani, C.; Zimmermann, H. PVD coatings on aluminium substrates. Surf. Coat. Technol. 1995, 74, 497–502. [Google Scholar] [CrossRef]
- Ramesh, C.S.; Sekhar, N.; Keshavamurthy, R.; Pramod, S. A study on slurry erosion and corrosion behaviour of HVOF sprayed titania coatings. Int. J. Surf. Sci. Eng. 2015, 9, 55–68. [Google Scholar] [CrossRef]
- Thim, G.P.; Oliveira, M.A.S.; Oliveira, E.D.A.; Melo, F.C.L. Sol–gel silica film preparation from aqueous solutions for corrosion protection. J. Non-Cryst. Solids 2000, 273, 124–128. [Google Scholar] [CrossRef]
- Yang, X.F.; Tallman, D.E.; Gelling, V.J.; Bierwagen, G.P.; Kasten, L.S.; Berg, J. Use of a sol--gel conversion coating for aluminum corrosion protection. Surf. Coat. Technol. 2001, 140, 44–50. [Google Scholar] [CrossRef]
- Wang, T.; Du, J.; Ye, S.; Tan, L.; Fu, J. Triple-Stimuli-Responsive Smart Nanocontainers Enhanced Self-Healing Anticorrosion Coatings for Protection of Aluminum Alloy. ACS Appl. Mater. Interfaces 2019, 11, 4425–4438. [Google Scholar] [CrossRef]
- Manasa, S.; Jyothirmayi, A.; Siva, T.; Sathiyanarayanan, S.; Gobi, K.V.; Subasri, R. Effect of inhibitor loading into nanocontainer additives of self-healing corrosion protection coatings on aluminum alloy A356.0. J. Alloys Compd. 2017, 726, 969–977. [Google Scholar] [CrossRef]
- Castro, Y.; Özmen, E.; Durán, A. Integrated self-healing coating system for outstanding corrosion protection of AA2024. Surf. Coat. Technol. 2020, 387, 125521. [Google Scholar] [CrossRef]
- Grigoriev, D.; Shchukina, E.; Shchukin, D.G. Nanocontainers for Self-Healing Coatings. Adv. Mater. Interfaces 2017, 4, 1600318. [Google Scholar] [CrossRef]
- Pepe, A.; Aparicio, M.; Duran, A.; Cere, S. Cerium hybrid silica coatings on stainless steel AISI 304 substrate. J. Sol-Gel Sci. Technol. 2006, 39, 131–138. [Google Scholar] [CrossRef]
- Lamaka, S.V.; Montemor, M.F.; Galio, A.F.; Zheludkevich, M.L.; Trindade, C.; Dick, L.F.; Ferreira, M. Novel hybrid sol–gel coatings for corrosion protection of AZ31B magnesium alloy. Electrochim. Acta 2008, 53, 4773–4783. [Google Scholar] [CrossRef]
- Lee, A.-C.; Lin, R.-H.; Yang, C.-Y.; Lin, M.-H.; Wang, W.-Y. Preparations and characterization of novel photocatalysts with mesoporous titanium dioxide (TiO2) via a sol–gel method. Mater. Chem. Phys. 2008, 109, 275–280. [Google Scholar] [CrossRef]
- Znaidi, L. Sol-gel-deposited ZnO thin films: A review. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 2010, 174, 18–30. [Google Scholar] [CrossRef]
- Gong, Y.; Geng, J.; Huang, J.; Chen, Z.; Wang, M.; Chen, D.; Wang, H. Self-healing performance and corrosion resistance of novel CeO2-sealed MAO film on aluminum alloy. Surf. Coat. Technol. 2021, 417, 127208. [Google Scholar] [CrossRef]
- Cacciotti, I.; Nanni, F.; Campaniello, V.; Lamastra, F.R. Development of a transparent hydrorepellent modified SiO2 coatings for glazed sanitarywares. Mater. Chem. Phys. 2014, 146, 240–252. [Google Scholar] [CrossRef]
- Bagalà, P.; Lamastra, F.R.; Kaciulis, S.; Mezzi, A.; Montesperelli, G. Ceria/stannate multilayer coatings on AZ91D Mg alloy. Surf. Coat. Technol. 2012, 206, 4855–4863. [Google Scholar] [CrossRef]
- Simonsen, M.E.; Søgaard, E.G. Sol-gel reactions of titanium alkoxides and water: Influence of pH and alkoxy group on cluster formation and properties of the resulting products. J. Sol-Gel Sci. Technol. 2010, 53, 485–497. [Google Scholar] [CrossRef]
- McDonagh, C.; Sheridan, F.; Butler, T.; MacCraith, B.D. Characterisation of sol-gel-derived silica films. J. Non-Cryst. Solids 1996, 194, 72–77. [Google Scholar] [CrossRef]
- Wang, D.; Bierwagen, G.P. Sol–gel coatings on metals for corrosion protection. Prog. Org. Coat. 2009, 64, 327–338. [Google Scholar] [CrossRef]
- Mudali, U.K.; Sridhar, T.M.; Rajendran, N. Electrophoretic deposition of TiO2 and TiO2+ CeO2 coatings on type 304L stainless steel. Surf. Eng. 2013, 23, 267–272. [Google Scholar] [CrossRef]
- Shanaghi, A.; Chu, P.K.; Moradi, H. Effect of Inhibitor Agents Addition on Corrosion Resistance Performance of Titania Sol--Gel Coatings Applied on 304 Stainless Steel. Surf. Rev. Lett. 2016, 24, 1750055. [Google Scholar] [CrossRef]
- Poznyak, S.K.; Zheludkevich, M.L.; Raps, D.; Gammel, F.; Yasakau, K.A.; Ferreira, M.G.S. Preparation and corrosion protective properties of nanostructured titania-containing hybrid sol–gel coatings on AA2024. Prog. Org. Coat. 2008, 62, 226–235. [Google Scholar] [CrossRef]
- Zand, R.Z.; Verbeken, K.; Adriaens, A. Electrochemical assessment of the self-healing properties of cerium doped sol-gel coatings on 304L stainless steel substrates. Int. J. Electrochem. Sci. 2012, 7, 9592–9608. [Google Scholar] [CrossRef]
- Du, J.; Wang, Z.; Wei, Z.; Yao, J.; Song, H. An environmental friendly self-healing coating with Silane/Ce-ZSM-5 zeolite structure for corrosion protection of aluminum alloy. Surf. Coat. Technol. 2022, 436, 128290. [Google Scholar] [CrossRef]
- Pepe, A.; Aparicio, M.; Cere, S.; Duran, A. Preparation and characterization of cerium doped silica sol–gel coatings on glass and aluminum substrates. J. Non Cryst. Solids 2004, 348, 162–171. [Google Scholar] [CrossRef]
- Schem, M.; Schmidt, T.; Gerwann, J.; Wittmar, M.; Veith, M.; Thompson, G.E.; Molchan, I.; Hashimoto, T.; Skeldon, P.; Phani, A.; et al. CeO2-filled sol--gel coatings for corrosion protection of AA2024-T3 aluminium alloy. Corros. Sci. 2009, 51, 2304–2315. [Google Scholar] [CrossRef]
- Montemor, M.F.; Pinto, R.; Ferreira, M.G.S. Chemical composition and corrosion protection of silane films modified with CeO2 nanoparticles. Electrochim. Acta 2009, 54, 5179–5189. [Google Scholar] [CrossRef]
- Yabuki, A.; Yamagami, H.; Noishiki, K. Barrier and self-healing abilities of corrosion protective polymer coatings and metal powders for aluminum alloys. Mater. Corros. 2007, 58, 497–501. [Google Scholar] [CrossRef]
- Lamaka, S.V.; Zheludkevich, M.L.; Yasakau, K.A.; Serra, R.; Poznyak, S.K.; Ferreira, M.G.S. Nanoporous titania interlayer as reservoir of corrosion inhibitors for coatings with self-healing ability. Prog. Org. Coat. 2007, 58, 127–135. [Google Scholar] [CrossRef]
- Nesterova, T.; Dam-Johansen, K.; Pedersen, L.T.; Kiil, S. Microcapsule-based self-healing anticorrosive coatings: Capsule size, coating formulation, and exposure testing. Prog. Org. Coat. 2012, 75, 309–318. [Google Scholar] [CrossRef]
- Nesterova, T. Self-Healing Anticorrosive Coatings; Technical University of Denmark: Kongens Lyngby, Denmark, 2012. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Abdelaziz, M. Cerium (III) doping effects on optical and thermal properties of PVA films. Phys. B Condens. Matter 2011, 406, 1300–1307. [Google Scholar] [CrossRef]
- Ali, F.M.; Kershi, R.M.; Sayed, M.A.; AbouDeif, Y.M. Evaluation of structural and optical properties of Ce3+ ions doped (PVA/PVP) composite films for new organic semiconductors. Phys. B Condens. Matter 2018, 538, 160–166. [Google Scholar] [CrossRef]
- Ren, S.; Meng, F.; Li, X.; Cui, Y.; Liu, R.; Liu, Y.; Hu, X.; Liu, L.; Wang, F. A self-healing epoxy composite coating based on pH-responsive PCN-222 smart containers for long-term anticorrosion of aluminum alloy. Corros. Sci. 2023, 221, 111318. [Google Scholar] [CrossRef]
Al | Si | Fe | Cu | Mn | Mg | Zn | Ti | Cr |
---|---|---|---|---|---|---|---|---|
Bal. | 0.7–1.3 | 0.5 | 0.1 | 0.4–1.0 | 0.6–1.2 | 0.2 | 0.25 | 0.25 |
Sample | Dips with Spheres | Dips without Spheres |
---|---|---|
Ti1DS | 1 | 0 |
Ti1DS1DT | 1 | 1 |
Absorbance (a.u.) | Concentration (M) |
---|---|
0.183 | 1.05 × 10−5 |
0.331 | 1.58 × 10−5 |
0.453 | 2.11 × 10−5 |
0.576 | 2.64 × 10−5 |
0.706 | 3.16 × 10−5 |
Name | Peak BE (eV) | FWHM (eV) | Atomic (%) | Chemical State |
---|---|---|---|---|
Al2p | 72.9 | 0.5 | 0.4 | metal |
C1s A | 282.4 | 2.2 | 1.2 | carbide |
C1s B | 284.9 | 2.2 | 21.5 | aliphatic |
C1s C | 287.3 | 2.2 | 3.4 | carboxyl |
N1s A | 397.7 | 2.9 | 1.0 | nitride |
N1s B | 400.6 | 2.9 | 1.2 | C–N |
N1s C | 405.4 | 2.9 | 0.4 | nitrate |
O1s A | 531.1 | 1.6 | 31.1 | oxides |
O1s B | 532.6 | 1.6 | 9.0 | OH− |
O1s C | 534.2 | 1.6 | 3.3 | O=C |
Ti2p3 A | 455.9 | 2.2 | 7.4 | Ti2O3 |
Ti2p3 B | 457.9 | 2.2 | 6.3 | TiO2−x |
Ti2p3 C | 459.5 | 2.2 | 6.9 | TiO2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mori, S.; Lamastra, F.R.; Montesperelli, G. Hybrid Ceramic Self-Healing Coatings for Corrosion Protection of Al Alloys in 3% NaCl Solution. Coatings 2023, 13, 1747. https://doi.org/10.3390/coatings13101747
Mori S, Lamastra FR, Montesperelli G. Hybrid Ceramic Self-Healing Coatings for Corrosion Protection of Al Alloys in 3% NaCl Solution. Coatings. 2023; 13(10):1747. https://doi.org/10.3390/coatings13101747
Chicago/Turabian StyleMori, Stefano, Francesca Romana Lamastra, and Giampiero Montesperelli. 2023. "Hybrid Ceramic Self-Healing Coatings for Corrosion Protection of Al Alloys in 3% NaCl Solution" Coatings 13, no. 10: 1747. https://doi.org/10.3390/coatings13101747
APA StyleMori, S., Lamastra, F. R., & Montesperelli, G. (2023). Hybrid Ceramic Self-Healing Coatings for Corrosion Protection of Al Alloys in 3% NaCl Solution. Coatings, 13(10), 1747. https://doi.org/10.3390/coatings13101747