Study of Asphalt Behavior on Pre-Wet Aggregate Surface Based on Molecular Dynamics Simulation and Surface Energy Theory
Abstract
:1. Introduction
2. Materials
3. Molecular Model Establishment and Rationality Verification
3.1. Force Field
3.2. Establishment of Asphalt Molecular Model
3.3. Establishment of SiO2 Crystal Model
3.4. Verification of the Rationality of the Asphalt Molecular Model
3.4.1. Density
3.4.2. Solubility Parameters
4. Molecular Dynamics Simulation of Asphalt Mixture Pre-Wetting Technology
4.1. Establishment of Asphalt–Mineral Material Pre-Wet Interface Model
4.2. Analysis of Interface Adhesion of Two Asphalt–Mineral Models
4.3. Analysis of the Diffusion Rate of Asphalt on the Surface of Mineral Aggregates
4.3.1. Mean Square Displacement
4.3.2. Analysis of the Diffusion Law of the Four Components of Asphalt on the Surface of Mineral Aggregates
4.3.3. Analysis of the Law of Diffusion of Asphalt on the Surface of Pre-Wet Mineral Aggregates
4.4. Analysis of Concentration Distribution of Asphalt on Mineral Surface
4.5. Feasibility Analysis of Pre-Wetting Technology Based on Surface Energy Theory
4.5.1. Analytical Method for Oil–Stone Interface Properties of Asphalt Mixture
4.5.2. Asphalt Surface Free Energy Calculation
4.5.3. Asphalt–Mineral Surface Contact Angle Test
4.5.4. Evaluation of Asphalt–Mineral Interface Adhesion in Dry State
4.5.5. Evaluation of Asphalt–Mineral Interface Adhesion in Water Environment
5. Conclusions
- This research proposes a new method for forming the asphalt–mineral interface, that is, an asphalt mixture pre-wetting technology. This technology facilitates the improvement of the asphalt mixture from the perspective of construction technology. The proposed technology was verified by molecular dynamics simulation software, and the results proved the feasibility of the asphalt mixture pre-wetting technology.
- The molecular dynamics simulation results show that the diffusion rate of the asphalt on the surface of the pre-wet mineral material is faster than that on the surface of the non-pre-wet mineral material whether at 25 °C or 165 °C.
- The results of the molecular dynamics calculation of the asphalt–mineral interface energy show that the asphalt–mineral interface formed by the asphalt and the pre-wet mineral material has high interface energy, revealing an improved adhesion performance. The pre-wetting effect of the light component facilitates the effective contact and fusion of the asphalt and the surface of the mineral material during the formation of the asphalt–mineral interface, thereby forming a strong interface.
- Based on the surface energy theory, an experimental study on the technology of a pre-wetting asphalt mixture is carried out. The experimental results show that the oil–stone interface properties of the pre-wetting asphalt mixture are obviously improved in both a dry state and water environment.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Özen, H.; Aksoy, A.; Tayfur, S.; Çelik, F. Laboratory performance comparison of the elastomer-modified asphalt mixtures. Build. Environ. 2008, 43, 1270–1277. [Google Scholar] [CrossRef]
- Pasetto, M.; Baldo, N. Unified approach to fatigue study of high performance recycled asphalt concretes. Mater. Struct. 2017, 50, 113. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, J.Y.; Xiao, F.P.; Amirkhanian, S.; Wang, J.; Xu, Z.Z. Impacts of multiple-polymer components on high temperature performance characteristics of airfield modified binders. Constr. Build. Mater. 2017, 134, 694–702. [Google Scholar] [CrossRef]
- Guo, W.; Guo, X.D.; Chang, M.Y.; Dai, W.T. Evaluating the effect of hydrophobic nanosilica on the viscoelasticity property of asphalt and asphalt mixture. Materials 2018, 11, 2328. [Google Scholar] [CrossRef]
- Bhasin, A.; Little, D.N. Application of Microcalorimeter to Characterize Adhesion between Asphalt Binders and Aggregates. J. Mater. Civil Eng. 2009, 21, 235–243. [Google Scholar] [CrossRef]
- Kim, J.; Jong Lee, H.J.; Kim, Y.R.; Kim, H.B. A drainage system for mitigating moisture damage to bridge deck pavements. Balt. J. Road Bridge Eng. 2011, 4, 168–176. [Google Scholar] [CrossRef]
- Khattak, M.J.; Baladi, G.Y.; Drzal, L.T. Low temperature binder-aggregate adhesion and mechanistic characteristics of polymer modified asphalt mixtures. J. Mater. Civil Eng. 2007, 19, 411–422. [Google Scholar] [CrossRef]
- Yu, X.; Dong, F.Q.; Ding, G.Y.; Liu, S.J.; Shen, S.H. Rheological and microstrural properties of foamed epoxy asphalt. Constr. Build. Mater 2016, 114, 215–222. [Google Scholar] [CrossRef]
- Hirato, T.; Murayama, M.; Sasaki, H. Development of high stability hot mix asphalt concrete with hybrid binder. J. Traffic Transport. Eng. 2014, 1, 424–431. [Google Scholar] [CrossRef]
- Huang, W.; Qian, Z.; Chen, G.; Yang, J. Epoxy asphalt concrete paving on the deck of long-span steel bridges. Chin. Sci. Bull. 2003, 48, 2391–2394. [Google Scholar] [CrossRef]
- Zhang, B.C.; Xi, M.; Zhang, D.W.; Zhang, H.X.; Zhang, B.Y. The effect of styrene-butadiene-rubber/montmorillonite modification on the characteristics and properties of asphalt. Constr. Build. Mater. 2009, 23, 3112–3117. [Google Scholar] [CrossRef]
- Zhang, F.; Yu, J.Y. The research for high-performance SBR compound modified asphalt. Constr. Build. Mater. 2010, 24, 410–418. [Google Scholar] [CrossRef]
- Sun, L.; Xin, X.T.; Ren, J.L. Asphalt modification using nano-materials and polymers composite considering high and low temperature performance. Constr. Build. Mater. 2017, 133, 358–366. [Google Scholar] [CrossRef]
- Kanno, A.I.; Leite, L.C.C.; Pereira, L.R.; de Jesus, M.J.R.; Andreata-Santos, R.; Alves, R.P.D.S.; Durigon, E.L.; Ferreira, L.C.S.; Gonçalves, V.M. Optimization and scale-up production of Zika virus Delta NS1 in Escherichia coli: Application of Response Surface Methodology. Amb Express. 2020, 10, 1. [Google Scholar] [CrossRef]
- Chopra, M.; Choudhury, N. Adsorption of uranyl ions from its aqueous solution by functionalized carbon nanotubes: A molecular dynamics simulation study. J. Mol. Liq. 2019, 294, 111569. [Google Scholar] [CrossRef]
- Majd, M.T.; Bahlakeh, G.; Dehghani, A.; Ramezanzadeh, B.; Ramezanzadeh, M. Combined molecular simulation, DFT computation and electrochemical studies of the mild steel corrosion protection against NaCl solution using aqueous Eucalyptus leaves extract molecules linked with zinc ions. J. Mol. Liq. 2019, 294, 111550. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Duvail, M.; Villard, A.; Molina, J.J.; Guilbaud, P.; Dufrêche, J.F. Multi-scale modelling of uranyl chloride solutions. J. Chem. Phys. 2015, 142, 024501. [Google Scholar] [CrossRef]
- Chen, Z.X.; Pei, J.Z.; Li, R.; Xiao, F.P. Performance characteristics of asphalt materials based on molecular dynamics simulation —A review. Constr. Build. Mater. 2018, 189, 695–710. [Google Scholar] [CrossRef]
- Ding, Y.J.; Tang, B.M.; Zhang, Y.Z.; Wei, J.M.; Cao, X.J. Molecular Dynamics Simulation to Investigate the Influence of SBS on Molecular Agglomeration Behavior of Asphalt. J. Mater. Civ. Eng. 2015, 27, 8. [Google Scholar] [CrossRef]
- Qu, X.; Wang, D.W.; Hou, Y.; Oeser, M.; Wang, L.B. Influence of Paraffin on the Microproperties of Asphalt Binder Using MD Simulation. J. Mater. Civ. Eng. 2018, 30, 8. [Google Scholar] [CrossRef]
- Wang, H.; Lin, E.Q.; Xu, G.J. Molecular dynamics simulation of asphalt-aggregate interface adhesion strength with moisture effect. Int. J. Pavement Eng. 2017, 18, 414–423. [Google Scholar] [CrossRef]
- Luo, L.; Chu, L.; Fwa, T.F. Molecular dynamics analysis of moisture effect on asphalt-aggregate adhesion considering anisotropic mineral surfaces. Appl. Surf. Sci. 2020, 527, 146830. [Google Scholar] [CrossRef]
- Xu, M.; Yi, J.; Feng, D.; Huang, Y.; Wang, D. Analysis of adhesive characteristics of asphalt based on atomic force microscopy and molecular dynamics simulation. ACS Appl. Mater Interfaces 2016, 19, 12393–12403. [Google Scholar] [CrossRef] [PubMed]
- JTG E20-2011; Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering. Ministry of Transport of the People’s Republic of China: Beijing, China, 2011.
- Rogel, E.; Carbognani, L. Density estimation of asphaltenes using molecular dynamics simulations. Energy Fuels 2003, 17, 378–386. [Google Scholar] [CrossRef]
- Li, D.D.; Greenfield, M.L. Chemical compositions of improved model asphalt systems for molecular simulations. Fuel 2014, 115, 347–356. [Google Scholar] [CrossRef]
- Khabaz, F.; Khare, R. Molecular simulations of asphalt rheology: Application of time temperature superposition principle. J. Rheol. 2018, 62, 941–954. [Google Scholar] [CrossRef]
- Xu, G.J.; Wang, H. Study of cohesion and adhesion properties of asphalt concrete with molecular dynamics simulation. Comput. Mater. Sci. 2016, 112, 161–169. [Google Scholar] [CrossRef]
- Speight, J.G. The Chemistry and Technology of Petroleum, 4th ed.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2007; pp. 945–946. [Google Scholar]
- Pansu, M.; Gautheyrou, J. Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods; Springer Science & Business Media: Amsterdam, The Netherlands, 2007; pp. 25–36. [Google Scholar]
Basic Indicator | 25 °C Penetration (0.1 mm) | 25 °C Ductility (cm) | Softening Point (°C) | Flash Point (°C) | Density (g·cm−3) |
---|---|---|---|---|---|
Test results | 89.6 | >100 | 48.7 | 265 | 1.003 |
Requirements | 80–100 | >100 | 42–52 | ≥245 | - |
Test procedure | GB/T0606-2011 [24] | GB/T0605-2011 [24] | GB/T0606-2011 [24] | GB/T0611-2011 [24] | GB/T0603-2011 [24] |
Basic indicator | 25 °C Penetration (0.1 mm) | 25 °C Ductility (cm) | Softening Point (°C) | Flash Point (°C) | Density (g·cm−3) |
---|---|---|---|---|---|
Test results | 111.3 | >100 | 42.5 | 245 | 1.001 |
Requirements | 100–120 | >100 | - | - | - |
Test procedure | GB/T0606-2011 [24] | GB/T0605-2011 [24] | GB/T0606-2011 [24] | GB/T0611-2011 [24] | GB/T0603-2011 [24] |
Asphalt Type | 90# Asphalt | 110# Asphalt | |
---|---|---|---|
Asphalt component | Saturate A | 11 | 11 |
Saturate B | 10 | 10 | |
Aromatic A | 29 | 29 | |
Aromatic B | 34 | 34 | |
Resin A | 4 | 3 | |
Resin B | 4 | 3 | |
Resin C | 6 | 5 | |
Resin D | 4 | 3 | |
Resin E | 5 | 4 | |
Asphaltene A | 5 | 4 | |
Asphaltene B | 3 | 2 | |
Asphaltene C | 4 | 3 |
Asphalt Type | Model Density (g/cm3) | Measured Density (g/cm3) | Density Ratio (%) |
---|---|---|---|
90# asphalt | 1.013 | 1.036 | 97.8 |
110# asphalt | 1.011 | 1.028 | 98.3 |
Asphalt | Cohesive Energy Density/(J/m3) | Solubility Parameter/(J/cm3)1/2 | Electrostatic Solubility Parameter/(J/cm3)1/2 | Van der Waals Solubility Parameter/(J/cm3)1/2 |
---|---|---|---|---|
90# asphalt | 2.911 × 108 | 17.291 | 1.509 | 16.786 |
110# asphalt | 3.335 × 108 | 18.262 | 1.072 | 17.764 |
Temperature (°C) | Asphalt | EDynamics (kcal/mol) | EAnneal (kcal/mol) | EInterface (kcal/mol) |
---|---|---|---|---|
25 | Unpre-wet | 11,072.487944 | 41,880.716774 | −30,808.22883 |
Pre-wet | 4036.826297 | 37,642.139897 | −33,605.31360 | |
165 | Unpre-wet | 6953.499457 | 35,892.273840 | −28,938.774383 |
Pre-wet | 3128.983748 | 34,984.372845 | −31,855.389097 |
Direction | Un-Pre-Wet | Pre-Wet |
---|---|---|
X | 1.063% | 1.054% |
3.91 Å | 10.61 Å | |
Y | 1.098% | 1.047% |
14.59 Å | 19.50 Å | |
Z | 2.472% | 2.280% |
34.84 Å | 10.52 Å |
Liquid Type | (mJ/m2) | (mJ/m2) | (mJ/m2) | Polarity Type |
---|---|---|---|---|
Distilled water | 72.8 | 21.8 | 51.0 | bipolar |
Ethylene glycol | 48.3 | 29.3 | 19.0 | unipolarity |
Contact Angle | Surface Energy | |||
---|---|---|---|---|
Distilled Water (°) | Ethylene Glycol (°) | (mJ·m−2) | (mJ·m−2) | (mJ·m−2) |
92.1 | 74.5 | 19.456 | 12.885 | 6.571 |
Interface Type | Temperature (°C) | Contact Angle (°C) | ||
---|---|---|---|---|
155 | 165 | 175 | ||
Conventional interface | 30.3 | 27.1 | 23.9 | 27.1 |
Pre-wet interface | 15.6 | 13.5 | 12.7 | 13.9 |
Interface Type | Work of Adhesion (mJ·m−2) |
---|---|
Un-pre-wet | 36.775 |
Pre-wet | 38.342 |
Interface Type | Wsl | Wal | Wsa | ΔW |
---|---|---|---|---|
Un-pre-wet | 142.192 | 70.132 | 36.775 | 175.549 |
Pre-wet | 71.529 | 70.132 | 38.342 | 103.319 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Wang, Y.; Li, H.; Chen, W. Study of Asphalt Behavior on Pre-Wet Aggregate Surface Based on Molecular Dynamics Simulation and Surface Energy Theory. Coatings 2023, 13, 1799. https://doi.org/10.3390/coatings13101799
Cao Y, Wang Y, Li H, Chen W. Study of Asphalt Behavior on Pre-Wet Aggregate Surface Based on Molecular Dynamics Simulation and Surface Energy Theory. Coatings. 2023; 13(10):1799. https://doi.org/10.3390/coatings13101799
Chicago/Turabian StyleCao, Yaoxi, Yanhua Wang, He Li, and Wuxing Chen. 2023. "Study of Asphalt Behavior on Pre-Wet Aggregate Surface Based on Molecular Dynamics Simulation and Surface Energy Theory" Coatings 13, no. 10: 1799. https://doi.org/10.3390/coatings13101799
APA StyleCao, Y., Wang, Y., Li, H., & Chen, W. (2023). Study of Asphalt Behavior on Pre-Wet Aggregate Surface Based on Molecular Dynamics Simulation and Surface Energy Theory. Coatings, 13(10), 1799. https://doi.org/10.3390/coatings13101799